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Abstract— Tactile perception is essential for human interaction
with the environment and is becoming increasingly crucial in
robotics. Tactile sensors like the BioTac mimic human fingertips
and provide detailed interaction data. Despite its utility in
applications like slip detection and object identification, this
sensor is now deprecated, making many existing valuable
datasets obsolete. However, recreating similar datasets with
newer sensor technologies is both tedious and time-consuming.
Therefore, it is crucial to adapt these existing datasets for use
with new setups and modalities. In response, we introduce
ACROSS, a novel framework for translating data between
tactile sensors by exploiting sensor deformation information. We
demonstrate the approach by translating BioTac signals into the
DIGIT sensor. Our framework consists of first converting the
input signals into 3D deformation meshes. We then transition
from the 3D deformation mesh of one sensor to the mesh
of another, and finally convert the generated 3D deformation
mesh into the corresponding output space. We demonstrate our
approach to the most challenging problem of going from a low-
dimensional tactile representation to a high-dimensional one. In
particular, we transfer the tactile signals of a BioTac sensor to
DIGIT tactile images. Our approach enables the continued use
of valuable datasets and the exchange of data between groups
with different setups.

I. INTRODUCTION

Tactile feedback is gaining significant attention in robotics
[1], [2]. Tactile sensors leverage various information modali-
ties, come in diverse shapes and sizes, and are implemented
in a wide range of technologies. This diversity makes the
exchange of data and trained models challenging. Moreover,
as sensor technology improves, datasets become obsolete. For
instance, BioTac by SynTouch was a high-end tactile sensor,
designed like a human fingertip. It has an elastomer covering a
rigid core filled with an incompressible conductive fluid. The
sensor outputs voltage readings from 19 internal electrodes,
capturing changes in the fluid. These readings are processed
as time-series signal data [3]–[5]. The BioTac has been proven
useful in various applications such as detecting object slips
and the direction of slips [6], [7] or identifying objects [8].
However, this sensor is now deprecated. Consequently, many
influential existing datasets, such as the BioTac SP direction
of slip dataset [7], the BioTac SP grasp stability dataset [6]
or the BioTac 2P grasp stability dataset [9], are now obsolete.
These datasets capture sensor outputs, specifically BioTac
signals, recorded while the sensors are mounted on robotic
hands that grasp various objects under different conditions,
with the stability of the grasps being evaluated. Despite
their obsolescence, such datasets remain important, as grasp
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stability and slip detection continue to be an active field of
research [10].

Furthermore, designing and collecting similar datasets
is a time-consuming and complex task. It requires careful
consideration of various factors, such as the choice of sensors
and their resolution, the data collection methods, and the
labeling process, among other requirements.

Hence, there is a need to convert existing useful datasets
into formats compatible with newer sensor modalities, even
if they involve different robotic or sensor configurations.
This allows researchers to leverage intrinsic information still
relevant to specific tasks, while also saving time and resources
by avoiding the need to collect entirely new datasets.

To this end, we propose ACROSS, a versatile approach
for transferring tactile data between sensors of varying
resolutions, including low-to-high, high-to-high, and high-to-
low resolution transfers [11]. We demonstrate the effectiveness
of ACROSS by converting low-resolution tactile (time series)
data from a BioTac sensor into a high-resolution vision-based
DIGIT sensor [12]. Our method enables the utilization of
existing datasets gathered with outdated sensors, avoiding
the tedious process of gathering data from scratch. Moreover,
it facilitates a way to transition between two intrinsically
distinct tactile sensor modalities, e.g., signal data to visual
representations.

Additionally, we provide an openly available dataset
comprising over 155K unique 3D mesh deformation pairs
from interactions involving BioTac and DIGIT sensors. This
dataset includes various types of indenters, the force exerted
on each sensor, and rendered images of the scenes. The source
code, dataset, and neural network checkpoints can be found on
our website: https://wzaielamri.github.io/publication/across.

II. RELATED WORK

Tactile sensors can capture the same deformation of an
object, but they may represent this deformation differently
depending on the type of sensor used [13]. For instance,
the elastomer’s deformations can be represented as either
time-series signals or images, depending on the modality
of the sensor. Therefore, our proposed approach focuses
on transferring the encoded information and knowledge at
the deformation level rather than at the output level, which
varies between sensors. Although some research attempted
to transfer between modalities, for instance, Lee et al. [14]
developed a framework to generate tactile images from the
GelSight sensor using digital camera images of various cloth
materials and vice versa, or the ViTac dataset [15], used
to train the networks, includes labeled images from the
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GelSight sensor and a digital camera of 100 fabric pieces.
Their framework utilizes two separate cycleGANs for the
bidirectional transfer. Unfortunately, these approaches require
labeled data from both sensor types. Moreover, the modality
of the source and target sensors is the same, i.e., vision.

Tatiya et al. [16] introduced a framework for transferring
knowledge across sensor modalities, allowing robots to handle
sensor failures or operate with different sensor configurations.
Their method leverages a variational encoder-decoder network
(VED) to map sensory observations from one modality, such
as vibration, to another, such as haptic, by learning a shared
feature space between them. However, the approach similarly
requires end-to-end labeled data, which can be resource-
intensive. Additionally, the framework assumes the same set
of objects is used across experiments, potentially limiting its
generalization to novel objects.

In contrast, our approach does not require end-to-end
labeled sensor outputs and can generalize to any type
of contact form, force, or orientation. Furthermore, we
facilitate transfers between distinct modalities and sensors
with different morphologies and sizes. Our framework starts
by converting the input signals into 3D deformation meshes.
Next, we transition from the 3D deformation mesh of one
sensor to that of another, and finally, we translate the generated
3D deformation mesh into the corresponding output space.
Unlike prior research, we address the challenging task of
converting a low-dimensional tactile representation into a
high-dimensional one. Specifically, we transfer tactile signals
from a BioTac sensor to DIGIT tactile images.

Our approach is inspired by Narang et al. papers [17], [18],
who introduced a framework using a finite element method
(FEM) model to simulate the deformation of the BioTac
sensor, interacting with different indenters. Two variational
autoencoders (VAE) were used. The first, a vanilla VAE
with linear layers, reconstructs the BioTac signals, while the
second, a convolutional mesh autoencoder (CoMA), recon-
structs the mesh deformation. CoMA network employs fast
localized spectral filtering, i.e., Chebyshev filters alongside
hierarchical pooling operations. These operations are adapted
for 3D meshes by computing the spectral information of the
mesh graph using Fourier transformation and then applying
Chebyshev filters for localized convolutional operations [19],
[20]. Both VAEs are subsequently frozen, and an MLP is
trained to project the latent vector from one modality to
another using labeled data pairs. In our work, we adopt
Narang et al.’s [17] approach, due to its performance, to
generate BioTac deformation meshes from the sensor input
signals.

Zhu et al. [21] applied a similar idea to synthesize the
volumetric mesh of a vision-based tactile sensor, GelSlim [22].
Two separate VAEs were employed. The first VAE was trained
to reconstruct the tactile images captured by GelSlim, ensuring
that the network could accurately capture the visual features
of the deformed elastomer. The second VAE was dedicated to
reconstructing the volumetric mesh from the tactile imprints,
capturing the 3D structure of the deformation. To further
refine their approach, Zhu et al. introduced a self-supervised

adaptation method that leverages a differentiable renderer
to generate synthetic meshes. This technique improved the
performance of the encoder, which embeds the image into the
latent space, and the projection Multilayer Perceptron (MLP),
which maps between the two different latent representation
spaces of the images and the volumetric mesh. By rendering
the generated mesh using the differentiable renderer and
comparing it to the observed tactile imprint, the system could
compute gradients and backpropagate errors, thereby refining
the model through further training. This combination of self-
supervision and differentiable rendering allowed the system
to bridge the gap between simulation and real-world tactile
data and to generate accurate mesh deformations out of tactile
images.

In contrast, other researchers have focused on creating
images derived from the physical interactions of vision-based
sensors. For instance, Wang et al. [23] provided TACTO, a
simulation of vision-based sensors, which uses Pyrender [24]
and normal forces to derive gel pad deformations and generate
then the corresponding sensor images. This simulation is
primarily demonstrated for the DIGIT sensor [12]. A vision-
based sensor that consists of an elastomeric gel pad that
reflects light emitted by a series of internal LEDs, enabling an
internal camera to record the deformation of the gel membrane.
Another solution, Taxim [25], predicts the output of image-
based tactile sensors using example-based photometric stereo
methods. It utilizes optical reflection functions to interpret
the gel pad’s illumination while interacting with objects. The
core concept involves simulating the sensor’s optical output
using a polynomial table based on a second-order polynomial
function. This function approximates the non-linearity of light
in vision-based tactile sensors. Additionally, this approach
enables the calibration and adjustment of these polynomial
coefficients with real sensor data and allows for the simulation
of marker motion fields on the gel surface. Given Taxim’s
superior performance over other state-of-the-art methods, we
incorporate it into our framework to generate DIGIT images
from 3D deformation meshes.

III. IMPLEMENTATION

Transferring between different modalities poses challenges
due to data representations and encoding variations. To
address these issues, we propose a three-step solution,
depicted in Figure 1. Step I: We initially predict the BioTac
surface deformation from the BioTac input signals. Step II:
We convert the BioTac surface mesh deformation to DIGIT
surface mesh deformation since the physical interaction of
both sensors can be modeled by a mesh deformation indepen-
dently of the sensor output modality. Step III: We generate
the DIGIT sensor image from the converted deformation.

Step I: Predicting BioTac Mesh Deformation

We adopt a similar methodology to that proposed by Narang
et al. [18]. We train a disentangled variational autoencoder
(β-VAE) [26] to reconstruct the BioTac sensor outputs. This
network is denoted as Signal VAE BioTac (SVB). To train the
network, we use a curated dataset that combines two publicly
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Fig. 1. An example of the ACROSS framework applied to translate BioTac
signals into DIGIT images. Step 1: Convert BioTac input signals to BioTac
surface deformation. Step 2: Convert BioTac surface mesh deformation to
DIGIT surface mesh deformation. Step 3: Generate DIGIT’s output from
the surface mesh deformation.

available BioTac signal datasets:, i.e., Narang et al. [18] and
Ruppel et al. [27]. This combination allows us to effectively
augment our data, which means increasing the diversity and
amount of data available for training. By augmenting our
dataset, we empirically reduced the overall loss and helped
the network learn more robust features by exposing it to a
wider range of examples.

We also train another β-VAE to reconstruct the 3D mesh
deformation of the BioTac sensor, denoted as Mesh VAE
BioTac (MVB). To model these deformations and collect the
dataset used for this task, we employ the validated Isaac Gym
BioTac FEM simulation [18].

Next, we train an MLP network to map between the latent
vectors of the SVB and the MVB network, referred to as
Signal to Mesh Projection Network (S2MPN). For this latent
space mapping, we use the publicly available dataset collected
by Narang et al. [18]. This dataset comprises pairs of data:
BioTac electrodes outputs and mesh deformations, resulting
from interactions with nine different indenters.

Step II: Modeling of Mesh Deformation

In this step, we train a third β-VAE [26], with the
same architecture used for the MVB network, this time to
reconstruct the DIGIT 3D deformations. This network is
denoted as Mesh VAE DIGIT (MVD). The data used to
train this network are also collected with Isaac Gym through
simulating physical interactions with the DIGIT sensor and
recording the corresponding 3D deformations. Given that
the sensor’s elastomer is primarily composed of Smooth-
On Solaris silicone [12], we configure the FEM soft-body
hyperparameters accordingly: an elasticity modulus of 539
kPa and a Poisson’s ratio of 0.499 [28]. Furthermore, we set
the dynamic friction coefficient between the DIGIT sensor
elastomer and the indenters to 0.78 [18].

Afterward, we train an MLP network to map the latent

space of the already trained MVB encoder network in Step I
to the latent space of the trained MVD encoder network, we
denote this network as Mesh to Mesh Projection Network
(M2MPN). To train the M2MPN, we collected unique paired
mesh deformations for both BioTac and DIGIT using the
Isaac Gym simulator. Details about the dataset collection
procedures follow in Section IV-A.

Step III: From Surface Deformation to DIGIT’s Output

We adapt the simulation model Taxim [25] to simulate
DIGIT images. Originally, Taxim calculated a height map
of the gel pad using object point clouds to estimate the
corresponding DIGIT image. We adjust this approach by
using the deformation mesh instead of the point cloud. Using
Pyrender [24], we estimate the height map that would be
captured by the sensor’s internal camera for each deformation
mesh. Subsequently, we generate the corresponding DIGIT
image by applying this height map along with Taxim’s
polynomial coefficients. Later, we improve the synthetic
image by applying a pyramid Gaussian blur to remove its
artifacts and make it more realistic. We describe this in detail
in Section IV-B.

IV. EXPERIMENTS AND RESULTS

This section introduces the datasets used in our framework,
followed by a detailed description of our network architecture.
Finally, it presents the results of our approach.

A. Datasets Description

To train the SVB network, we curated an unlabeled real
BioTac signal dataset by normalizing each input channel
separately and merging two existing datasets [18], [27] to
augment our data and improve the network’s generalization
and performance on unseen data. Each data vector comprises
19 electrode values, normalized and adjusted to fall within the
range of [-1, 1]. The dataset provided by Ruppel et al. [27]
contains an error that increased throughout data gathering.
This error is attributed to a rise in temperature during the data
collection process, which affects the properties of the fluid
and causes an output drift [5]. To address this, we fitted a
linear function for each electrode by utilizing gradient descent
to minimize the difference between each non-contact timestep
and the linear function. We then used the linear function to
shift the values towards the default values of the electrodes,
as depicted in Figure 2. Default values represent the sensor
readings when it is at rest and no touches are recorded. This
shows that the error can be successfully removed by using a
linear function. Furthermore, the majority of the non-contact
data was excluded to ensure a balanced dataset. The combined
dataset yielded almost 250K unique BioTac signal data points.

We then collect a BioTac deformation dataset consisting
of approximately 860 unique indentations trajectories. Each
trajectory includes 20 different 3D mesh deformations, with
depths ranging from 0.1mm to 2mm in 0.1mm increments.
We set the maximum indentation to 2mm, a value chosen
to align with later simulations involving the DIGIT sensor.
Given that the DIGIT has thinner sides, 2mm is a suitable
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Fig. 2. Fitted function for Electrode 0 (green) in relation to its default
value (blue). All non-contact data of the electrode before and after being
shifted are respectively plotted in blue and yellow.

Fig. 3. The nine indenters used to collect the BioTac-DIGIT deformation
dataset.

maximum indentation for these simulations. Furthermore,
each trajectory is replicated using the nine indenter types
shown in Figure 3 to have a wide variety of touches. This
results in an overall dataset of approximately 155K unique
3D deformation meshes. We use the collected dataset to train
the MVB network.

Since the S2MPN requires labeled data to train, we re-
simulate the BioTac mesh deformations corresponding to
the real signals in Narang et al.’s [18] dataset, following
their description. The dataset was then filtered to ensure
consistency with our collected BioTac deformation dataset.
Only data points within a maximum depth of 2 mm were
selected, resulting in a dataset of almost 9K unique data points
with the corresponding labeled BioTac signals. To ensure an
unbiased split, the data was divided into distinct trajectories.
We then randomly selected 15% of those trajectories as our
test set. The remaining data points were randomly split into
training and validation sets, as shown in Table I.

In Step II, we collected a DIGIT mesh deformation
dataset, comprising approximately 155K unique 3D DIGIT
mesh deformations, following the same trajectories as the
BioTac mesh dataset. To ensure alignment between the two
mesh datasets, we maintained consistent force, angle, and

Fig. 4. Transferred BioTac sensor (green) to align it with the DIGIT sensor
surface (gold), in order to collect paired 3D deformation meshes.

TABLE I
SIZE OF THE DATASETS USED IN OUR FRAMEWORK. THE NUMBER

BETWEEN PARENTHESIS PRESENTS THE SIZE OF THE INPUT/ OUTPUT OF
THE DATA. FOR 1 AND 2 , THE SAME DATASETS ARE USED, AND THE

SPLITS ARE IDENTICAL.

Networks Datasets Train Validation Test

SVB BioTac Signals (19) 196397 27218 24551

S2MPN
BioTac Signals (19)

BioTac Meshes (4246x3)
5841 1409 1417

MVB BioTac Meshes (4246x3)1 122924 15560 17121

MVD DIGIT Meshes (6103x3)2 122924 15560 17121

M2MPN
BioTac Meshes (4246x3)1

DIGIT Meshes (6103x3)2
122924 15560 17121

position parameters for each interaction pair since labeled
and matching BioTac DIGIT meshes are required for training
the M2MPN. In order to address the difficulty in representing
side touches arising from the differing shapes of the DIGIT
and BioTac sensors, we rotate and translate the BioTac sensor
on its axis within its horizontal plane, as depicted in Figure 4.
This transformation mimics the unfolding of the BioTac
elastomer to align with and cover the flat surface of the DIGIT
sensor. This solution ensures that forces and deformations
resulting from side touches correspond with the other sensor.

B. Network Descriptions

The encoder of our SVB network comprises five layers.
The first three are linear layers with sizes [256, 128, 64] and
two parallel linear layers which predict µ and log(σ2), each
with a size of 8. The decoder is composed of four linear
layers with sizes [64, 128, 256, 19]. Each layer is followed
by a ReLU activation function. The network is trained to
minimize the following function:

ℓS = MSE(S − Ŝ) + βS KL (f (zS | S) ∥N (0, 1)) , (1)

where f is the encoder of the SVB network, βS is the weight
of the KL divergence loss, and is equal to 0.005. zS is the
sampled latent vector given the input S. The mean-squared
error (MSE) is calculated between the normalized predicted
and ground-truth signal. The network uses Adam optimizer
with a learning rate equal to 0.0001. The hyperparameters
for all our proposed network architectures are empirically
determined.

The S2MPN has four linear layers with sizes
[512, 128, 256, 256]. Each linear layer is followed by
an ELU activation function and a dropout layer with dropout
rates equal to [0.4, 0.3, 0.2, 0.5]. It is optimized using Adam



with a learning rate of 0.0005 and using the following MSE
loss function:

ℓSMP = MSE(zMB − ẑMB), (2)

where zMB represents the predicted BioTac latent space and
ẑMB is the target BioTac latent space.

Both our 3D mesh reconstruction VAEs, i.e., MVB and
MVD, are built upon graph convolutional mesh autoencoders
(CoMA). Both networks have identical architectures. The
encoder is composed of four graph convolution layers with
sizes [16, 16, 16, 32] and a kernel size of 6, each followed
by a downsampling layer with a factor of 2. Next, a linear
layer with a size of 512 is applied, followed by two parallel
linear layers with sizes [128, 128] to represent µ and log(σ2),
used for the latent space of the VAE. The networks are
optimized using Adam, with an initial learning rate of 0.001
and a learning rate decay after each epoch equal to 0.99. The
following cost function is minimized:

ℓM = MSE(M−M̂)+βM KL (g (zM | M) ∥N (0, 1)) , (3)

where g is the encoder of the corresponding mesh VAE, βM

is the weight of the KL divergence loss, and is equal to
0.005 for both BioTac and DIGIT mesh VAEs. zM is the
sampled latent vector given the input M . The mean-squared
error (MSE) is calculated between the input and predicted
normalized mesh, averaged over the entire batch and all 3D
vertices. All networks are trained for a maximum of 300
epochs, with early stopping to prevent overfitting.

Finally, our M2MPN consists of four linear layers with
sizes [512, 1024, 1024, 256]. Each linear layer is followed
by a dropout layer with dropout rates of [0.2, 0.4, 0.0, 0.0],
and an ELU activation function. The learning rate is set to
0.001. Early stopping is also employed and the minimized
loss function is defined as follows:

ℓMMP = MSE(zMD − ẑMD), (4)

where zMD represents the predicted DIGIT latent space vector
and ẑMD is the target latent space vector.

In the final step of this pipeline, we use Pyrender [24] to
obtain the height map of each DIGIT mesh deformation. The
Taxim images generated from these height maps contain some
artifacts due to the resolution of the gel pad mesh. To address
this issue, we apply an additional pyramid Gaussian blur to
the entire generated image, including the contact region, using
kernel sizes of [51, 21, 11, 5]. This differs from the original
Taxim, which does not apply Gaussian blur to the contact
region. Figure 5 illustrates the artifacts and the improvements
achieved after applying the additional pyramid Gaussian blur.

C. Converting Real Data

In this subsection, we assess the performance of our trained
networks in converting real-world data. To quantify this,
we calculate the root-mean-square error (RMSE) averaged
on all unseen test data for all our trained networks. The
RMSE for the SVB is measured between the ground truth
normalized electrode values and the network prediction and
is equal 0.060 with a standard deviation of 0.034. When

Fig. 5. Comparison of artifacts in the generated image before (left) and
after (right) applying the additional pyramid Gaussian blur.

TABLE II
ROOT-MEAN-SQUARE ERROR (RMSE) AND EUCLIDEAN DISTANCE (EUC.
DIST.) MEASURED BETWEEN THE PREDICTION AND THE GROUND-TRUTH
OUTPUTS FOR ALL SAMPLES IN THE TEST SET. FOR ALL NETWORKS, THE
RMSE AND EUC. DIST. ARE REPORTED IN µm. VALUES ARE AVERAGED

OVER ALL THE VERTICES IN THE MESH AND AVERAGED ON ONLY
VERTICES IN THE DEFORMATION REGION.

Networks
RMSE Euc. Dist. RMSE Euc. Dist.

All Vertices Deformation Region

S2MPN 78.21 (41.88) 85.00 (49.80) 94.07 (48.32) 121.02 (62.31)

MVB 12.28 (4.75) 13.90 (5.15) 16.03 (4.29) 21.26 (4.92)

MVD 9.28 (4.20) 10.13 (3.98) 12.43 (3.93) 14.60 (4.15)

M2MPN 21.57 (19.08) 18.68 (19.38) 27.72 (20.07) 28.54 (21.90)

testing both projector networks, i.e., S2MPN and M2MPN,
we generate the mesh from the predicted latent vector using
the frozen trained decoder of the corresponding VAE network,
and we measure the average RMSE in micrometers (µm)
for all vertices between the ground-truth mesh and predicted
mesh. Additionally, we calculate the RMSE averaged only for
the vertices within the deformation region. The deformation
region is defined as comprising all vertices that deviate by
10µm or more from the original mesh that has no indentations.
Furthermore, we measure the Euclidean distance between the
predicted and target meshes in micrometers (µm) for all
vertices and for those specifically within the deformation
region. The results of S2MPN, MVB, MVD and M2MPN
are reported in Table II.

According to Table II, S2MPN exhibits higher RMSE
and Euclidean distance error than the other networks. This
performance discrepancy is primarily attributed to the limited
training set of paired examples. Additionally, the used dataset
from Narang et al. [17] includes misaligned signals and
indenters positions that could not be corrected. Figure 6
presents a reconstructed BioTac mesh, generated from real
BioTac signal data.

Further, we tested our entire framework on unseen real
BioTac signal recordings from Narang et al. [18] and
converted them to DIGIT output images. Figure 7 shows
the qualitative results of five selected BioTac signals that we
converted to DIGIT images using our framework.

The spatial positions and depth of the indentations are
accurately preserved between the BioTac input signal and



Fig. 6. Reconstructed BioTac mesh. Left: Real electrode values. Center:
Ground-truth BioTac mesh deformation. Right: Reconstructed BioTac mesh
deformation.

Fig. 7. Converted samples. First row: Real electrode values. Second row:
Ground-truth BioTac mesh deformations. The outer frame represents the
“unfolded” BioTac surface. Third row: Converted DIGIT mesh deformations.
Fourth row: DIGIT output images. The third and fourth rows were generated
using the first row as input.

the DIGIT output image across all timestamps in the test set,
and not only in those examples shown in Figure 7. These
accurate results can be verified in the video available on our
website. However, the shapes of the indentations are partially
reconstructed, as can be observed in Figure 6. This limitation
arises due to the lower resolution of the BioTac sensor, which
has only 19 electrodes, and these cannot capture the detailed
contours of indentations, compared to the higher-resolution
DIGIT sensor output.

V. DISCUSSION AND CONCLUSION

Our novel framework, ACROSS, represents a promising
approach for re-utilizing datasets from deprecated sensors, and
it enables the exchange of data across different setups. Despite
differences in sensor modalities, we successfully demonstrated
the framework’s capability to accurately convert previously
unseen BioTac sensor data into DIGIT output images, as
evidenced by the qualitative examples provided.

ACROSS is composed of three steps: The first step involves
converting the source sensor inputs into their corresponding

3D deformations. The second step consists of mapping
these source sensor deformation meshes to the target sensor
deformation meshes. Finally, in the third step, we generate
the output values based on the resulting meshes.

The core innovation of our framework lies in the 3D
mesh deformation conversion between tactile sensors, which
share an inherent similarity. We demonstrate this approach by
transferring low-resolution inputs, i.e., BioTac signals, into
high-resolution outputs, i.e., DIGIT images. Nevertheless, the
lower resolution and differing format of the BioTac sensor
compared to the DIGIT sensor may result in the loss of detail
that a real DIGIT sensor would capture, such as the precise
shape of indentations.

Additionally, we offer a dataset featuring paired 3D
mesh deformations from BioTac and DIGIT sensors, as
well as a DIGIT FEM model for simulating the mesh
deformations. However, the current framework has limitations.
For instance, given the curvature of the sensor surfaces and
shape mismatches, precise alignment of the sensors was
essential during data collection to accurately capture side
touches on both surfaces. In the current paper, we addressed
this by calculating a transformation matrix to align the
BioTac surface with the DIGIT surface, involving rotation and
translation of the BioTac sensor within its horizontal plane.
Hence, mapping physical deformations between sensors with
different morphologies and features are inherently challenging.
We aim to develop an alternative method for representing the
data that does not require calculating transformation matrices
for alignment.

Future work will focus on improving the signal-to-mesh
model by expanding the training dataset and gathering more
real-world data. We also plan to quantitatively assess the qual-
ity of the conversion by applying the framework to a variety
of tasks, i.e., classification tasks, and explore its adaptability
by incorporating additional sensor modalities. Furthermore,
we intend to refine the syntactic data generated by the Taxim
algorithm, which currently lacks shadow information for the
DIGIT sensor, by exploring alternative methods. Our objective
is to improve the framework’s robustness and its ability to
generalize effectively to other sensors.
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