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Abstract—Tactile sensing presents a promising opportunity for
enhancing the interaction capabilities of today’s robots. BioTac
is a commonly used tactile sensor that enables robots to perceive
and respond to physical tactile stimuli. However, the sensor’s
non-linearity poses challenges in simulating its behavior. In
this paper, we first investigate a BioTac simulation that uses
temperature, force, and contact point positions to predict the
sensor outputs. We show that training with BioTac temperature
readings does not yield accurate sensor output predictions during
deployment. Consequently, we tested three alternative models,
i.e., an XGBoost regressor, a neural network, and a transformer
encoder. We train these models without temperature readings
and provide a detailed investigation of the window size of
the input vectors. We demonstrate that we achieve statistically
significant improvements over the baseline network. Furthermore,
our results reveal that the XGBoost regressor and transformer
outperform traditional feed-forward neural networks in this
task. We make all our code and results available online on
https://github.com/wzaielamri/Optimizing BioTac Simulation.

Index Terms—BioTac, XGBoost, Transformer, Tactile Percep-
tion

I. INTRODUCTION

Tactile sensing sensors offer robots valuable information that
can be used to enhance and complement knowledge coming
from other modalities such as vision or audio, especially in
situations where this knowledge is entirely or partially not
available [1], [2].

In situations where the sensor is unavailable or experiment
repetitions are costly, the value of a reliable, real-time sim-
ulation becomes evident. Such a simulation can effectively
estimate sensor outputs for various touch scenarios. Such
simulation would offer a good alternative to gathering data in
different setups and environments [1]. However, simulations
only approximate real-world data, and models trained on this
data alone can typically not be directly used in real robots.
This problem is also known as the reality gap, and it can be
mitigated with techniques such as sim2real [3] or continual
learning [4]. Nevertheless, the quality of the simulated data
should be as high as possible to minimize the reality gap and
increase the success of other modules down the pipeline.

Various studies have presented simulations for a range of
tactile sensors, including TACTO [5] for vision-based sensors
like DIGIT [6] and OmniTact [7], touch simulation for fabric-
based tactile sensors [8], a simulation for the iCub skin [9],
and several simulations for the BioTac sensor [10]–[12].

However, in this paper, we focus on the BioTac [13], [14],
one of the most widely used tactile sensors [15]. It consists
of a rigid core covered by an elastomeric skin filled with
an incompressible conductive fluid. This sensor proved to be
helpful in different tasks, such as grasp stability [16], object
identification [17], localizing artificial tumors [18], [19], etc.

Some simulations of the BioTac sensor exist. Ruppel et
al. [10] collected a real-world dataset with the BioTac 2P
sensor [20] mounted on a Shadow Robot Hand [21]. The
dataset captures the tactile sensor readings while touching with
different forces, positions, and orientations, an indenter with a
spherical tip of radius equal to 2 mm, attached to a calibrated
force-torque sensor (ATi nano17e [22]). They propose a neural
network model that can estimate electrodes, vibration, and
pressure signals using the force and position vector of the
contact point alongside temperature values. However, their
approach requires using the temperature values in the input
vector, which are not available in rigid body simulation
environments like Gazebo [23].

Narang et al. [11] developed a finite element model (FEM)
that can mimic the deformation behavior of the elastomeric
skin and the liquid gel inside. From the point cloud of the FEM
nodal field data, a neural network based on the PointNet++
architecture [24] is used to estimate the electrode values of the
BioTac 2P [20]. To validate the FEM model and train the neural
network, they collected data on different trajectories using nine
different indenters interacting with three different tactile sensors.
The FE simulation takes 7 minutes to simulate one single
trajectory, which makes it a big drawback. Later, they improved
the approach using the NVIDIA Isaac Gym simulator [25],
achieving a 75 times improvement [26]. However, a single
trajectory simulation of 6 mm takes 5.57 s to simulate.

Furthermore, the authors improved the electrodes’ estimation,
by using a self-supervised latent learning network that maps
between the FEM Mesh and electrode signals. Despite these
improvements, this solution is still not fast enough to be used
in real-time systems. Moreover, this solution estimates only
the electrodes’ values and not the pressure or vibration signals
recorded by the BioTac sensor, which are valuable modalities
when used in grasping and manipulation tasks [27].

Zaoata-Impata and Gil [12] used vision to estimate the
electrode values of the BioTac SP sensor [28]. A modified Semi-
Regression Generative Adversarial Network (SR-GAN) [29]
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was used to synthesize electrode values out of point cloud
representation of grasped deformable daily objects and their
grasping data by using labeled and unlabeled input data.
The authors collected 4000 samples of grasping positions,
electrodes, and pressure values of two BioTac SP sensors
mounted on a Shadow Robot Hand [21] and 3D point clouds
recorded with an Intel RealSense D415 depth camera. Since
collecting data is not trivial, a generator was used to generate
synthetic BioTac data for the point clouds and the grasping
positions in order to augment the dataset and improve the
learning of the discriminator, whose task was to estimate the
correct BioTac outputs. The unlabeled samples boosted the
performance of the network. In addition, this work sheds light
on the possibility of using vision, in this case through point
clouds, to estimate signal data for the BioTac sensor. However,
this implementation only used 4000 samples.

Since vibration and pressure readings add valuable infor-
mation when used for manipulation tasks [27], we must
simulate these alongside electrode values. The solution of
Narang et al. [26] only estimates the electrode signals and is
comparatively slow. In comparison, Zaoata-Impata and Gil [12]
implementation uses a small dataset. Considering these factors,
we opt for the solution provided by Ruppel et al. [10].

In the next Section II, we revisit the research conducted
by Ruppel et al. [10]. Within that section, we first delve into
the details of their work. Subsequently, in Section III, we
thoroughly investigate two directions to improve the simulation
further.

II. BIOTAC SENSOR SIMULATION

The simulation provided by Ruppel et al. [10] is based
on a neural network trained with a real-world dataset to
predict the BioTac sensor signals. This dataset includes data
from approximately one hour of recording sampled at 100
Hz. It consists of the complete BioTac output values, i.e.,
19 electrode voltage e1, . . . , e19, absolute and dynamic fluid
pressure pdc and pac, temperature tdc and heat flow tac. The
dataset also includes the BioTac’s and indenter’s position and
orientation recorded with a vision tracking system [30]. For
the data pre-processing pipeline, the position of the indenter’s
tip is calculated using transformation matrices in the BioTac
coordinate frame, represented in Figure 1.
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Fig. 1. (a): Map of the electrodes on the BioTac sensor [31]. (b): BioTac
sensor and the position/ orientation of the coordinate frame [31].

These transformation matrices are calibrated to adjust for
systematic offsets by reducing the error between the probes’
positions and the BioTac surface. In other words, probes
with light touch contact at the end of a contact cycle and
with force measurements below 0.3;N are gathered, and their
distance to the skin surface of the BioTac is calculated with
the transformation matrices. In such cases, that distance should
be equal to 0. Due to calibration issues, this distance deviates
from 0, 5.039 mm on average. While iterating for 1000
steps and adjusting these transformation matrices, i.e., adding
and subtracting small values, the distance error is reduced to
0.444 mm on average for all these selected probes.

Two deep neural networks, A and B, were proposed to
simulate the sensor outputs at timestep t = T . Both networks
take as input the x, y, and z contact position of the indenter’s
tip in the BioTac coordinate frame at timestep t = T , Fx,
Fy , and Fz values of the force sensor at timesteps T , T − 10,
and T + 10 and the temperature directly taken from BioTac
readings at timestep t = T , i.e., an input vector of length 13.

Network A is a dense neural network with five hidden
layers and over 6 million parameters, employing a pre-mapping
fusion strategy [1]. On the other hand, Network B is a more
compact neural network with around 800 thousand parameters
and adopting a midst-mapping fusion strategy [1]. Network
B consists of three separate dense layer columns that merge
into a dense layer. Positional, force, and temperature values
undergo separate processing within these columns.

Both networks were trained with the loss function presented
in Equation 1, which consists of the summation of the mean
absolute error (MAE) and the mean squared error (MSE).

Loss =

∑n
i=1(|yi − ŷi|+ (yi − ŷi)

2)

n
(1)

The authors report achieving 9.3% normalized mean absolute
error (MAE) over all channels calculated on the z-score
normalized outputs of the neural network, i.e., not in the
original scale between 0 and 4095, with Network B. However,
Network A reached 11.3% MAE. In both cases, the reported
results values consider only one of the two dynamic pressure
channels (pac0) because both channels are nearly identical. The
reported results also omitted the heat flow channel (tac). During
the neural network training phase, both channels, i.e., pac1
and tac, were utilized without justification for this approach,
resulting in an output vector comprising 23 channels.

Following their findings, Network B with separate columns
yielded better results and had less trainable parameters. Thus,
we use it in all our subsequent investigations. In particular, we
identify two possible improvements: one related to the temper-
ature used as an input, since this information is unavailable
in simulators. The second area of improvement concerns the
windowing size used for the force and position values used in
the original paper, which was not sufficiently justified.

We use a similar split used by Ruppel et al. [10] to analyze
these possible improvements. The test and validation sets
consist of 30 chunks of data, each comprising 1000 data
points. This configuration ensures that each set, independently,



accounts for 10% of the entire dataset. We train the network
without early stopping for 50 epochs. We also conduct 10-fold
cross-validation to enhance the statistical robustness of our
metric reporting. We also do not consider the channels pac1
and tac in the metric calculation.

A. Investigating the Training with Temperature Readings

The authors used the current temperature readings (tdc) at
timestep t = T of the BioTac sensor to predict the output
values. Since the used simulation environment Gazebo [23]
lacks temperature information, they suggest fixing that input
value to a specific constant, specifically the mean temperature
value of the entire collected dataset. However, the BioTac
sensor is sensitive to temperature changes [13], and plotting
the temperature values of the dataset, Figure 2, it can be
seen that the temperature readings of the BioTac sensor
continuously increase over time. This data suggests that fixing
the temperature to a specific constant value will decrease the
model’s performance.
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Fig. 2. Temperature values of the BioTac sensor in the Ruppel et al. [10]’s
dataset. The dashed black line represents the average temperature value.

To test the effect of fixing the temperature value, we train
Network B using the same hyperparameters used by the
authors. However, during the testing phase, we first compute the
network’s outputs using the correct temperature values provided
in the dataset. Second, we compute the network’s output using
a fixed temperature value. Here, we test all temperature values
in the dataset, including the mean value suggested by Ruppel
et al. [10]. The results are shown in Figure 3.

Examining Figure 3, we observe the lowest error when
using the correct temperature as input, 9.6%. However, fixing
the temperature in the best-case scenario leads to an averaged
normalized MAE of 22.8%. Hence, fixing the input temperature
value translates to a relative performance loss of 24.4%. We
determine the relative loss between the two scenarios by
determining the MAE of a naive model (53.7%), which always
outputs the mean value of each channel as the prediction.
These findings emphasize the need for an improved solution
focusing on learning the data outputs without relying on
temperature information since these are unavailable in the
simulation environment.
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Fig. 3. Average normalized MAE over all channels for ten folds for Network
B. The solid line represents the normalized MAE values when fixing the
temperature input value and probing all temperatures in the dataset. The
dashed line represents the normalized MAE, when using the appropriate
correct temperature values of the test set. The shaded area represents the upper
and lower limits calculated by the standard deviation. The vertical dash-dotted
line represents the mean temperature of the entire dataset.

B. Investigating the Windowing Size

The authors reported using the input vector force readings at
three timesteps: T−10, T , and T+10, omitting all intermediate
timesteps and claiming their inclusion would lead to overfitting.
Moreover, the use of force values from future timesteps, i.e.,
T +10, remains unexplained, and error reduction by including
future values was not quantified. Thus, we conducted a thorough
analysis of the choice of windowing size for force values and
explored the impact of incorporating force values from future
timesteps. To investigate this, we re-train Network B across
six different conditions, keeping the current temperature and
current position and varying in each experiment the windowing
size of the force values as follows:

1) Forces Ft: ∀ t ∈ {T, T − 10, T + 10}.
2) Forces Ft: ∀ t ∈ {T, T − 10}.
3) Forces Ft: ∀ t ∈ {T}.
4) Forces Ft: ∀ t ∈ {T, T − 10, T − 5, T + 5, T + 10}.
5) Forces Ft: ∀ t ∈ [T − 10, T + 10], t ∈ N.
6) Forces Ft: ∀ t ∈ [T − 10, T ], t ∈ N.

The training and validation loss curves for all conditions are
depicted in Figure 4. Additionally, Table I illustrates these six
conditions’ normalized mean absolute errors.

Figure 4 shows no sign of overfitting when using shorter
intervals for the force values, as both training and validation loss
curves converge over time. Table I reveals no apparent decrease
in the metrics between all six input vector combinations
when testing on a fixed temperature value equal to the mean
temperature of the entire dataset. However, relying solely on the
mean MAE over ten folds for comparison may be misleading.
A more accurate approach is to compute paired differences of
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TABLE I
RESULTS OF ALL TRAINED MODELS OVER ALL TEN FOLDS. THE VALUE IN

PARENTHESES REPRESENTS THE STANDARD DEVIATION. MAE IS
CALCULATED ON THE OUTPUT VALUES IN THE ORIGINAL SCALE. NORM.
MAE IS CALCULATED ON THE NORMALIZED OUTPUT OF THE NETWORK;

THE LOWER, THE BETTER.

Nb. Param.
MAE

Norm.
MAE

MAE
Norm.
MAE

Over all Channels Electrodes Only

1 806K
18.977 0.228 17.147 0.232
(1.719) (0.022) (1.642) (0.023)

2 805K
23.220 0.237 18.941 0.239
(1.403) (0.018) (1.458) (0.020)

3 804K
25.739 0.245 19.012 0.240
(1.539) (0.019) (1.498) (0.021)

4 807K
21.944 0.233 19.003 0.240
(1.514) (0.019) (1.473) (0.020)

5 819K
21.809 0.234 19.194 0.242
(1.548) (0.020) (1.529) (0.021)

6 812K
22.319 0.234 19.038 0.240
(1.469) (0.019) (1.468) (0.021)

normalized MAE for each fold separately and average these
differences. This ensures a fair comparison, as the same ten
folds are consistently used across all combination experiments.

We calculate the paired differences for the input combination
used by the authors against all other investigated combinations.
Statistical assessment is conducted using a left-tailed paired
t-test. Since cross-validation with a single dataset involves
reusing different training data points in multiple folds, it
violates the independence assumptions of the paired t-test [32].
Hence, we employ the corrected paired t-test by Nadeau and
Bengio [33], which accounts for the number of training and
test data points and addresses the issue of high type I errors in
the common paired t-test. The null hypothesis assumes that the
paired difference is equal to 0, indicating no differences. The
alternative hypothesis suggests that the normalized MAE of the
first distribution is lower than that of the second distribution.
We report the paired normalized MAE difference and the p-
value in Table II.

Table II indicates that all comparisons are significant with

TABLE II
SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-TEST [33]

CONDUCTED ON DIFFERENT INPUT COMBINATIONS PAIRS. THE FIRST
VALUE DEPICTS THE PAIRED NORMALIZED MAE DIFFERENCE IN PERCENT
OVER THE TEN FOLDS, AND THE SECOND VALUE BETWEEN PARENTHESIS

REPRESENTS THE p-VALUE.

1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6
Paired MAE Diff. -0.893% -1.763% -0.513% -0.630% -0.655%
p-value (0.004) (0.000) (0.044) (0.009) (0.013)

p < 0.05. These results show that adding force values from
past and future timesteps, 1 vs 2 and 1 vs 3, decreases the error
by ca. 0.9% and 1.8%, respectively. In addition, using shorter
intervals of 10 ms, 1 vs 5, or including force values at timesteps
T − 5 and T +5, 1 vs 4, does not reduce the error values. We
will still consider these investigations and analyses and check
different input combinations for our proposed solutions.

III. METHODOLOGY

Based on the results presented in the previous section, we
identify two areas of improvement for the BioTac simulation.
The first concerns using or omitting temperature as an input
value. The second concerns the windowing size used for
the force and position values. This section describes the
methodology used to optimize the BioTac simulation.

A. Training without Temperature Readings

Firstly, we train the baseline network B provided by Ruppel
et al. [10] and use the mean temperature value of the dataset as
input, and we use these scores as baseline. Next, we implement
three approaches: a classical method using XGBoost [34], a
gradient-boosting algorithm. XGBoost is fast and suitable for
predicting continuous output variables [35]. A feed-forward
deep neural network, given that this type of network is
also commonly used in regression tasks [36]. Finally, we
implement a transformer network since these proved beneficial
in several time-series tasks [37]. Inspired by vision transformers
(ViT) [38], we reformulate the classification task used in the
ViT into a regression task by using a transformer encoder to
predict the output vector. We present in Figure 5 the used
backbone architecture for the transformer network [38].

We use Ruppel et al. [10]’s normalization, input, and output
vectors with minor changes. For instance, we use the same input
vector but without the temperature value as input resulting in
an input vector of 12 values, i.e., x, y, and z at timestep
T , force values (Fxt, Fyt, and Fzt) at timesteps T − 10,
T , and T + 10. The output value used consists of all 19
electrodes signals e1. . . e19, the pressure values pdc, and the
dynamic vibration pac0 at timestep T , i.e., 21 output values.
All channels’ input and output values are normalized using the
z-score normalization.

In contrast to Ruppel et al., [10], we thoroughly fine-tune
the hyperparameters of the tested models, namely XGBoost,
feed-forward deep neural network, and transformer, using
SMAC3 [39]. The normalized mean absolute error (MAE) is
used as a cost function. We randomly split the data into training
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and validation sets (90% / 10%) with random seed values. To
select the best configuration, we utilize hyperband [40] as an
intensifier for the feed-forward network and the transformer,
and we use a maximum budget of 30 epochs. The hyperpa-
rameters and their corresponding search space are reported in
the supplementary material.

XGBoost does not support multi-variable output vectors.
Thus, we fit one regressor for each channel. All regressors use
the same hyperparameters determined with SMAC3. During
training, we utilize the MAE loss function. The feed-forward
network and the transformer are optimized using Adam [41],
and we use the loss function presented in Equation 1.

Once the hyperparameters are determined, we use them to
train our models from scratch. We split the dataset into training,
validation, and test set in 80% / 10% / 10%, respectively. We
perform early stopping on the validation loss to avoid overfitting.
In contrast, k-fold cross-validation with ten folds is executed
for a robust test set evaluation.

B. Varying the Windowing Size

We also thoroughly investigate the choice of the input
window for all tested approaches while omitting the temperature
values. Beyond adjusting the force values sampling interval
proposed in Section II-B, we explore two additional input
combinations. For both input combinations 1 and 5, we include
previous and next positional values within the sampling window
to provide the network with contextual touch location informa-
tion. These are respectively denoted as input combinations 7
and 8:

7) Current, last, and next position and forces Ft: ∀ t ∈
{T, T − 10, T + 10}.

8) Current, last, and next position and forces Ft: ∀ t ∈
[T − 10, T + 10], t ∈ N.

We only test within the timestep range of t−10 to t+10 since
the force values’ sampling frequency of 100 Hz is a multiple
of 10, which aligns with the position’s sampling frequency of
10 Hz. We use the SMAC procedure described in the previous

Subsection III-A with the same hyperparameter search space.
More details are in the supplementary material.

IV. RESULTS

Here, we first report the results of our tested approaches that
are trained without temperature. Next, we delve into a detailed
investigation of a better input window.

A. Training without Temperature Readings

After executing SMAC for all approaches, the models are
trained, and the mean absolute error is calculated. We also
determined the number of learnable parameters. For XGBoost
regressors, we calculate the number of parameters by counting
the number of nodes in all regressors across channels after
training them. We then average this count over the folds,
accounting for variability across each fold. The results are
outlined in Table III.

TABLE III
RESULTS OF THE ALL TRAINED MODELS OVER ALL TEN FOLDS. THE VALUE
IN PARENTHESES REPRESENTS THE STANDARD DEVIATION. THE METRICS

ARE CALCULATED OVER ALL CHANNELS AND OVER ALL ELECTRODES.
MAE IS CALCULATED ON THE OUTPUT VALUES IN THE ORIGINAL SCALE.

NORM. MAE IS CALCULATED ON THE NORMALIZED OUTPUT OF THE
NETWORK; THE LOWER, THE BETTER.

Nb.
MAE

Norm.
MAE

Norm.
Param. MAE MAE

Over all Channels Electrodes Only

Ruppel et al. [10] 806K
18.977 0.228 17.147 0.232
(1.719) (0.022) (1.642) (0.023)

Our XGBoost
1584K

13.368 0.150 11.446 0.150
Regressor (1.340) (0.014) (1.204) (0.015)
Our Feed-Forward

2233K
14.693 0.168 12.724 0.169

Neural Network (1.386) (0.015) (1.252) (0.016)
Our Transformer 599K 13.760 0.156 11.736 0.155
Encoder (1.400) (0.016) (1.280) (0.016)

From Table III, it can be seen that the XGBoost and
transformer approaches without temperature readings achieved
a statistically significant improvement compared to the baseline.
The absolute improvement measured in the normalized MAE
ranges from 6.0% to 7.8%. The transformer encoder stands
out for its compactness and reduced number of trainable
parameters. While the XGBoost reaches the lowest normalized
mean absolute error with 15.0%.

We also present the normalized MAE for each channel in
Figure 6. There, it can be seen that the prediction errors differ
substantially between channels. Particularly, electrodes 7, 8, 9,
and 10, located at the tip of the BioTac sensor, result in the
highest errors. This phenomenon is also seen for the XGBoost
regressors, which have a dedicated regressor for each channel.
This suggests a high non-linear dynamic of those electrodes.

Another possible reason for the differences in prediction
errors could be the different number of samples available for
each channel; i.e., the dataset might be unbalanced. We assessed
that by selecting all data points at the beginning of a contact
cycle having a force measurement higher than 0.3 N , located
close to the BioTac sensor surface within a distance of less
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than 2 mm. Subsequently, we identify the nearest electrode
to each contact point using the 3D spatial positions of each
electrode provided by Lin et al. [31]. The results are depicted
in Figure 7.

Figure 7 highlights a non-uniform distribution of the number
of touches near each electrode, implying an unbalanced dataset.
However, this may not be the only reason contributing to the
high MAE for specific electrodes. Based on the work of Lin
et al. [31], we know that the BioTac sensor does not have
radial symmetry. In addition, the fluid volume is not the same
throughout the sensor. Particularly near electrodes 7, 8, 9, and
10, there is a higher fluid volume, which is partially visible
in Figure 1(b). This supports the hypothesis that some of the
error is due to the non-linear dynamics of the sensor.

B. Varying the Windowing Size

After executing SMAC for all approaches, the models are
trained, and the mean absolute error is calculated. The best
hyperparameters for each trained model and input combination
and the result metrics values are reported in the supplementary
material.

Figure 8 presents the distribution of the normalized MAE
for all combinations across all approaches. XGBoost attains
the lowest MAE when trained with input combination 8,
incorporating force values with shorter intervals and the last and
next position, reaching a value of 14.8%, which represents an
8.0% improvement over the baseline. Likewise, our transformer
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Fig. 8. The Normalized MAE was calculated over all channels for the four
models and all input combinations.

encoder achieves a 7.8% improvement over the baseline with
the same input combination.

We also conduct a corrected paired significance t-test [33]
and report the paired normalized MAE difference and p-value
for three specific comparison combinations: 5 vs 1, 7 vs 1 and
8 vs 1. The null hypothesis assumes that the paired difference is
equal to 0, indicating no differences. The alternative hypothesis
suggests that the normalized MAE of the first distribution is
lower than that of the second distribution. Comparison 5 vs 1
assesses the impact of using force values of shorter intervals
on error reduction, 7 vs 1 examines the effect of including
the last and next different position, and 8 vs 1 evaluates
the significance of incorporating more force values at shorter
intervals along with the last and next position in error reduction.
The paired normalized MAE difference, t-statistic and p-values
for various combination pairs across all models are reported
in the supplementary material.

Table IV indicates that adding more force values of shorter
intervals does not directly lead to a reduction in error (5 vs 1),
and the same applies when adding the last and next contact
position (7 vs 1). However, combining both information yielded
statistically significant improvements for the XGBoost regressor
and the transformer encoder in the 8 vs 1 comparison. However,
they are small, ranging between 0.2% and 0.6%.

TABLE IV
SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-TEST [33]

CONDUCTED ON DIFFERENT INPUT COMBINATIONS. THE FIRST VALUE
DEPICTS THE PAIRED NORMALIZED MAE DIFFERENCE IN PERCENT OVER

THE TEN FOLDS, AND THE SECOND VALUE BETWEEN PARENTHESIS
REPRESENTS THE p-VALUE.

5 vs 1 7 vs 1 8 vs 1
Our XGBoost 0.282% -0.055% -0.208%
Regressor (0.999) (0.190) (0.009)
Our Feed-Forward 0.217% 0.862% 0.402%
Neural Network (0.715) (0.961) (0.758)
Our Transformer 0.077% 0.188% -0.662%
Encoder (0.631) (0.672) (0.047)

We also analyzed the significance between the tested
approaches for all input combinations and reported the re-
sults. Table V reveals that both the XGBoost regressor and



TABLE V
SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-TEST [33]

CONDUCTED FOR ALL MODELS. THE FIRST VALUE DEPICTS THE PAIRED
NORMALIZED MAE DIFFERENCE VALUE IN PERCENT, AND THE SECOND

VALUE BETWEEN PARENTHESIS REPRESENTS THE p-VALUE.

vs
Our XGBoost Our XGBoost Our Transformer

Our FFNN Our Transformer Our FFNN

1
-1.778% -0.531% -1.247%
(0.000) (0.074) (0.002)

2
-1.360% -0.259% -1.101%
(0.001) (0.250) (0.000)

3
-1.272% 0.851% -2.123%
(0.003) (0.996) (0.000)

4
-1.989% -0.032% -1.956%
(0.000) (0.459) (0.000)

5
-1.279% -0.173% -1.107%
(0.002) (0.322) (0.002)

6
-1.106% 0.092% -1.197%
(0.003) (0.616) (0.002)

7
-2.696% -0.774% -1.921%
(0.000) (0.105) (0.000)

8
-2.389% -0.077% -2.312%
(0.001) (0.439) (0.002)

the transformer encoder outperform the feed-forward neural
network across all input combinations, demonstrating an error
reduction ranging between 1.1% and 2.7%. However, a direct
comparison between the XGBoost and transformer yields no
significant values, suggesting no difference between the paired
MAE.

Considering the importance of inference time during the
deployment phase, we compute the inference time over 100
random inputs for all approaches and subsequently average
the results. We run the inference calculation on a system
with an AMD Ryzen 7 pro 4750u CPU. Figure 9 shows the
inference time against the number of learnable parameters
for all approaches and input combinations. For Ruppel et
al. [10] baseline network, we only plot results for the first
input combination, as all other combinations do not differ
meaningfully in inference time or numbers of parameters.
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Fig. 9. Visualization of inference time against the number of parameters for
each model over all input combinations.

Figure 9 reveals that the transformer network has the lowest

number of parameters compared to all other approaches, with
an inference time ranging from 1.0 ms up to 3.0 ms, i.e.,
at least two to five times slower than the baseline. This is
attributed to the quadratic time complexity of the attention
blocks [42]. XGBoost is the fastest of the tested methods, with
approximately half the inference time of the baseline network.

Considering that the number of floating-point operations per
second (FLOPS) offers additional valuable insights into the
energy consumption and inference efficiency of neural networks
[43], we include the FLOPS count for all the neural networks,
i.e., the baseline network, our feed-forward network, and our
transformer encoder, in our supplementary material.

V. CONCLUSION

We present optimizations to simulate tactile signals from
the BioTac 2P sensor. Our contributions include a thorough
analysis of Ruppel et al.’s work [10] and a thorough analysis
of three alternative solutions. We focused on two areas: the use
of temperature readings in the training pipeline of the network,
and the choice of other variables in the input vector and the
windowing.

We introduced three alternative models, i.e., an XGBoost
regressor, a feed-forward neural network, and an adapted
transformer encoder. Our results demonstrate that XGBoost and
the transformer encoder can achieve significantly lower error
values than the baseline. The absolute error reduction stands at
8.0%, while the relative error shows a statistically significant
improvement of 14.9%. Furthermore, our investigations reveal
a statistically significant improvement when incorporating force
values from future timesteps and previous and next position
values. Albeit, there are small between 0.2% up to 0.6%
depending on the model used.

Notably, the XGBoost regressor has the lowest inference
time, making it preferable for scenarios where simulation infer-
ence time is critical. Despite having less trainable parameters
than all other models, the transformers exhibit the highest
inference time of the tested models.

We also report on the limitations of the dataset. Particularly,
the dataset is unbalanced and only includes a single indenter
type. However, some of the errors can be attributed to the
non-linear dynamics of the sensor, probably caused by the
non-radial symmetry and non-uniform fluid volume throughout
the sensor.

As future work, the dataset needs to be improved and
extended to include different BioTac 2P sensors, varied sur-
rounding temperatures, and several indenter shapes to enhance
model robustness and generalizability, mitigating the absence
of temperature information in the simulation environment and
other non-linear dynamics.

Due to the differentiated performance of different electrodes
due to non-linearities and unbalanced dataset, we also suggest
training an ensemble of transformer networks to better deal
with the non-linear dynamic of the sensor.
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TABLE VI
SUMMARY OF THE HYPERPARAMETER SEARCH SPACE USED FOR THE XGBOOST REGRESSOR, WHEN RUNNING SMAC3 [39] AND THE SELECTED

CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters Our XGBoost Regressor
Search Space Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8

eta Uniform Float
∈ [0.0001, 0.5] 0.0431 0.06818 0.04942 0.04457 0.07178 0.06647 0.04901 0.04798

gamma Uniform Integer
∈ [0, 10] 1 7 2 1 7 3 3 2

number estimate Uniform Integer
∈ [100, 1000] 972 155 932 880 230 913 715 949

max depth Uniform Integer
∈ [1, 10] 10 10 10 10 10 10 10 10

min child weight Uniform Integer
∈ [1, 100] 95 6 87 67 59 83 84 84

max delta step Uniform Integer
∈ [0, 10] 7 10 0 1 5 3 10 1

subsample Uniform Float
∈ [0.5, 1] 0.647 0.9632 0.5042 0.5068 0.6114 0.5486 0.507 0.5038

colsample bytree Uniform Float
∈ [0.5, 1] 0.9825 0.9517 0.8671 0.868 0.7449 0.8242 0.9927 0.7814

colsample bylevel Uniform Float
∈ [0.5, 1] 0.9819 0.9223 0.8572 0.839 0.9264 0.7642 0.9479 0.8407

colsample bynode Uniform Float
∈ [0.5, 1] 0.8042 0.9155 0.6173 0.7416 0.9802 0.924 0.8621 0.9989

TABLE VII
TABLE SUMMARIZING THE HYPERPARAMETER SEARCH SPACE USED FOR THE FEED-FORWARD DEEP NEURAL NETWORK, WHEN RUNNING SMAC3 [39]

AND THE SELECTED CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters Our Feed-Forward Neural Network
Search Space Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8

Batch Size Categorical
[256, 512] 256 512 256 512 512 512 512 512

Learning Rate

Categorical
a× e−c

for a ∈ N+ and ∈ [1, 9]
c ∈ N+ and ∈ [2, 5]

0.0003 0.0002 0.0005 0.0006 0.0003 0.0006 0.0004 0.0005

Number
of Layers (L)

Uniform Int
Lower: 4
Upper: 12

7 10 7 7 7 9 7 8

Numebr of Neurons
in Layer i
for i ∈ [0, L]

Uniform Int
Lower: 50

Upper: 1000
Step: 10

[860, 670,
160, 580,

900, 1000,
440]

[590,300,
820,520,
90,670,
850,120,
330,570]

[620, 470,
120, 620,
830, 890,

350]

[730, 390,
120, 630,
770, 720,

380]

[820,740,
190,740,

1000,850,
430]

[580,710,
600,170,
270,350,
70,780,

690]

[580,580,
160,450,
920,920,

380]

[470,600,
440,830,
790,900,
190,270]

Activation function
in Layer i
for i ∈ [0, L]

Categorical
[sigmoid, relu,
hardtanh, tanh,
leakyrelu, elu]

[hardtanh, tanh,
elu, relu,

leakyrelu, relu,
leakyrelu]

[elu, relu,
hardtanh, elu,

leakyrelu, relu,
elu, elu,

elu, leakyrelu]

[tanh, elu,
elu,

leakyrelu,
leakyrelu,

elu,
leakyrelu]

[tanh, tanh,
elu,

hardtanh,
sigmoid,
leakyrelu,
leakyrelu]

[tanh, relu,
elu, leakyrelu,

elu, relu,
leakyrelu]

[tanh, relu,
leakyrelu, elu,

leakyrelu,
leakyrelu,
leakyrelu,
hardtanh,
leakyrelu]

[tanh, relu,
leakyrelu,
hardtanh,

sigmoid, relu,
leakyrelu]

[tanh, relu,
elu, leakyrelu,

hardtanh,
leakyrelu,

elu, leakyrelu]

Negative Slope
for Leakyrelu

Categorical
a× e−1

for a ∈ N+ and ∈ [1, 9]
0.5 0.7 0.4 0.2 0.1 0.4 0.3 0.6



TABLE VIII
TABLE SUMMARIZING THE HYPERPARAMETER SEARCH SPACE USED FOR THE TRANSFORMER ENCODER, WHEN RUNNING SMAC3 [39] AND THE SELECTED

CONFIGURATION FOR ALL INPUT COMBINATIONS.

Hyperparameters Our Transformer Encoder
Search Space Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8

Batch Size Categorical
[256, 512] 512 512 512 256 512 256 512 256

Learning Rate

Categorical
a× e−c

for a ∈ N+ and ∈ [1, 9]
c ∈ N+ and ∈ [2, 5]

0.00009 0.00004 0.00009 0.0004 0.004 0.0003 0.00004 0.002

Number
of Layers (L)

Uniform Int
Lower: 2
Upper: 8

3 8 3 2 7 4 7 2

Number of
Multi-Heads

Categorical
[1, 2, 4, 8] 4 8 4 8 1 4 1 8

Dropout Rate Categorical
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Embedding
Dimensions

Categorical
[32, 64, 128, 256, 512, 1024] 128 128 128 128 64 32 128 64

Hidden
Dimension

Categorical
[64, 128, 256, 512, 1024] 512 512 512 512 128 256 128 256

TABLE IX
RESULTS OF ALL TRAINED NETWORKS OVER ALL 10 FOLDS FOR ALL INPUT COMBINATIONS. THE VALUE IN PARENTHESES REPRESENTS THE STANDARD
DEVIATION. THE METRICS ARE CALCULATED OVER ALL CHANNELS AND OVER ALL ELECTRODES. MAE IS CALCULATED ON THE OUTPUT VALUES IN THE

ORIGINAL SCALE. NORM. MAE IS CALCULATED ON THE NORMALIZED OUTPUT OF THE NETWORK; THE LOWER, THE BETTER.

Nb.
Param.

MAE
Norm.
MAE

MAE
Norm.
MAE

Over all Channels Electrodes Only

R
up

pe
l

et
al

.[
10

]

1 806K
18.977 0.228 17.147 0.232
(1.719) (0.022) (1.642) (0.023)

2 805K
23.220 0.237 18.941 0.239
(1.403) (0.018) (1.458) (0.020)

3 804K
25.739 0.245 19.012 0.240
(1.539) (0.019) (1.498) (0.021)

4 807K
21.944 0.233 19.003 0.240
(1.514) (0.019) (1.473) (0.020)

5 819K
21.809 0.234 19.194 0.242
(1.548) (0.020) (1.529) (0.021)

6 812K
22.319 0.234 19.038 0.240
(1.469) (0.019) (1.468) (0.021)

7 809K
22.497 0.234 18.811 0.238
(1.466) (0.019) (1.449) (0.020)

8 822K
21.555 0.231 18.927 0.239
(1.504) (0.019) (1.489) (0.020)

O
ur

X
G

B
oo

st
R

eg
re

ss
or

1 1584K
13.368 0.150 11.446 0.150
(1.340) (0.015) (1.204) (0.015)

2 1041K
14.372 0.159 12.002 0.158
(1.446) (0.016) (1.298) (0.016)

3 1209K
15.994 0.168 12.373 0.163
(1.622) (0.017) (1.340) (0.017)

4 1694K
13.275 0.152 11.638 0.153
(1.430) (0.016) (1.335) (0.016)

5 840K
13.407 0.153 11.774 0.154
(1.393) (0.015) (1.277) (0.016)

6 1046K
13.785 0.156 11.866 0.156
(1.385) (0.015) (1.277) (0.016)

7 1239K
13.299 0.150 11.375 0.150
(1.330) (0.015) (1.182) (0.015)

8 1331K
12.873 0.148 11.385 0.150
(1.255) (0.014) (1.156) (0.014)

Nb.
Param.

MAE
Norm.
MAE

MAE
Norm.
MAE

Over all Channels Electrodes Only
O

ur
Fe

ed
-F

or
w

ar
d

N
eu

ra
l

N
et

w
or

k
1 2233K

14.693 0.168 12.724 0.169
(1.386) (0.015) (1.252) (0.016)

2 2881K
15.624 0.173 12.965 0.171
(1.536) (0.017) (1.388) (0.018)

3 1701K
17.010 0.181 13.265 0.175
(1.314) (0.014) (1.105) (0.014)

4 1478K
14.712 0.171 13.109 0.173
(1.317) (0.015) (1.247) (0.016)

5 2554K
14.056 0.166 12.721 0.169
(1.213) (0.013) (1.100) (0.014)

6 1124K
14.476 0.167 12.676 0.168
(1.150) (0.013) (1.043) (0.013)

7 1794K
15.231 0.177 13.351 0.178
(1.344) (0.016) (1.242) (0.016)

8 2490K
14.517 0.172 13.204 0.175
(1.450) (0.017) (1.404) (0.017)

O
ur

Tr
an

sf
or

m
er

E
nc

od
er

1 599K
13.760 0.156 11.736 0.155
(1.400) (0.016) (1.280) (0.016)

2 203K
14.534 0.162 12.102 0.160
(1.482) (0.017) (1.374) (0.017)

3 598K
15.229 0.160 11.595 0.154
(1.617) (0.017) (1.328) (0.017)

4 401K
13.204 0.152 11.564 0.153
(1.363) (0.016) (1.266) (0.016)

5 237K
13.441 0.155 11.824 0.156
(1.241) (0.014) (1.147) (0.015)

6 114K
13.669 0.155 11.719 0.155
(1.505) (0.018) (1.376) (0.018)

7 701K
13.927 0.158 11.838 0.157
(1.614) (0.019) (1.468) (0.019)

8 103K 12.984 0.149 11.334 0.150
(1.552) (0.018) (1.473) (0.019)



TABLE X
EXTENDED SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-TEST [33] CONDUCTED ON DIFFERENT INPUT COMBINATIONS FOR ALL NETWORKS. THE
FIRST VALUE DEPICTS THE PAIRED NORMALIZED MAE DIFFERENCE IN PERCENT OVER THE TEN FOLDS, THE SECOND VALUE REPRESENTS t-STATISTIC,

AND THE THIRD VALUE BETWEEN PARENTHESIS REPRESENTS THE p-VALUE.

1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6 7 vs 1 8 vs 1 5 vs 6 8 vs 5

Ruppel et al. [10]
-0.893% -1.763% -0.513% -0.630% -0.655% 0.578% 0.353% -0.025% -0.277%
(0.004) (0.000) (0.044) (0.009) (0.013) (0.967) (0.915) (0.398) (0.007)

Our XGBoost -0.859% -1.773% -0.113% -0.282% -0.539% -0.055% -0.208% -0.258% -0.490%
Regressor (0.000) (0.000) (0.129) (0.001) (0.000) (0.190) (0.009) (0.009) (0.001)
Our Feed-Forward -0.441% -1.267% -0.324% 0.217% 0.133% 0.862% 0.402% -0.084% 0.620%
Neural Network -2.222 -5.436 -2.184 0.589 0.373 1.995 0.729 -0.226 1.296

(0.027) (0.000) (0.028) (0.715) (0.641) (0.961) (0.758) (0.413) (0.886)
Our Transformer -0.587% -0.391% 0.385% 0.077% 0.083% 0.188% -0.662% 0.007% -0.585%
Encoder -2.479 -1.400 1.074 0.344 0.438 0.461 -1.870 0.019 -1.537

(0.018) (0.097) (0.845) (0.631) (0.664) (0.672) (0.047) (0.507) (0.079)

TABLE XI
EXTENDED SIGNIFICANCE TEST WITH THE CORRECTED PAIRED t-TEST [33] CONDUCTED FOR ALL NETWORK PAIRS. THE FIRST VALUE DEPICTS THE
PAIRED NORMALIZED MAE DIFFERENCE IN PERCENT OVER THE TEN FOLDS, THE SECOND VALUE REPRESENTS t-STATISTIC, AND THE THIRD VALUE

BETWEEN PARENTHESIS REPRESENTS THE p-VALUE.

vs
Our XGBoost Our FFNN Our Transformer Our XGBoost Our XGBoost Our Transformer

Ruppel et al. [10] Ruppel et al. [10] Ruppel et al. [10] Our FFNN Our Transformer Our FFNN

1
-7.740% -5.962% -7.209% -1.778% -0.531% -1.247%
-9.785 -7.741 -8.670 -5.188 -1.581 -3.690
(0.000) (0.000) (0.000) (0.000) (0.074) (0.002)

2
-7.774% -6.414% -7.515% -1.360% -0.259% -1.101%
-9.962 -8.136 -8.956 -4.284 -0.704 -5.338
(0.000) (0.000) (0.000) (0.001) (0.250) (0.000)

3
-7.730% -6.457% -8.581% -1.272% 0.851% -2.123%
-9.936 -8.509 -11.401 -3.623 3.407 -6.570
(0.000) (0.000) (0.000) (0.003) (0.996) (0.000)

4
-8.140% -6.151% -8.108% -1.989% -0.032% -1.956%
-9.546 -7.352 -8.958 -5.653 -0.106 -11.260
(0.000) (0.000) (0.000) (0.000) (0.459) (0.000)

5
-8.089% -6.809% -7.916% -1.279% -0.173% -1.107%
-9.960 -8.364 -10.944 -3.888 -0.477 -3.810
(0.000) (0.000) (0.000) (0.002) (0.322) (0.002)

6
-7.856% -6.750% -7.947% -1.106% 0.092% -1.197%
-10.032 -7.725 -9.859 -3.610 0.303 -3.918
(0.000) (0.000) (0.000) (0.003) (0.616) (0.002)

7
-8.373% -5.678% -7.599% -2.696% -0.774% -1.921%
-10.568 -7.579 -7.886 -5.235 -1.347 -5.899
(0.000) (0.000) (0.000) (0.000) (0.105) (0.000)

8
-8.301% -5.912% -8.224% -2.389% -0.077% -2.312%
-10.363 -5.268 -9.773 -4.242 -0.157 -4.004
(0.000) (0.000) (0.000) (0.001) (0.439) (0.002)



TABLE XII
NUMBER OF PARAMETERS IN THOUSANDS, INFERENCE TIME IN MILLISECONDS, AND FLOATING-POINT OPERATIONS PER SECOND (FLOPS) IN MILLIONS

FOR ALL APPROACHES ACROSS ALL INPUT COMBINATIONS. THE NUMBER OF FLOPS IS ONLY CALCULATED FOR THE NEURAL NETWORKS.

Ruppel et al.’s Network B [10] Our XGBoost Regressor Our FF Neural Network Our Transformer Encoder
Numb. Inference Numb. Numb. Inference Numb. Numb. Inference Numb. Numb. Inference Numb.
Param. (ms) FLOPS Param. (ms) FLOPS Param. (ms) FLOPS Param. (ms) FLOPS

1 806K 0.628 1.61M 1584K 0.422 - 2233K 0.876 4.46M 599K 1.618 5.97M
2 805K 0.539 1.61M 1041K 0.272 - 2881K 1.173 5.75M 203K 2.982 1.63M
3 804K 0.539 1.61M 1209K 0.358 - 1701K 0.741 3.40M 598K 1.396 3.58M
4 807K 0.555 1.61M 1694K 0.432 - 1478K 0.757 2.95M 401K 1.005 5.59M
5 819K 0.572 1.65M 840K 0.304 - 2554K 0.833 5.10M 237K 2.995 11.64M
6 812K 0.552 1.62M 1046K 0.356 - 1124K 0.613 2.24M 114K 1.427 2.98M
7 809K 0.572 1.62M 1239K 0.387 - 1794K 0.760 3.58M 701K 2.939 9.89M
8 822K 0.607 1.65M 1331K 0.412 - 2490K 1.002 4.98M 103K 0.988 5.30M
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