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Abstract
Many application scenarios for image recognition require learning of deep networks from small sample sizes in the order of

a few hundred samples per class. Then, avoiding overfitting is critical. Common techniques to address overfitting are

transfer learning, reduction of model complexity and artificial enrichment of the available data by, e.g., data augmentation.

A key idea proposed in this paper is to incorporate additional samples into the training that do not belong to the classes of

the target task. This can be accomplished by formulating the original classification task as an open set classification task.

While the original closed set classification task is not altered at inference time, the recast as open set classification task

enables the inclusion of additional data during training. Hence, the original closed set classification task is augmented with

an open set task during training. We therefore call the proposed approach open set task augmentation. In order to integrate

additional task-unrelated samples into the training, we employ the entropic open set loss originally proposed for open set

classification tasks and also show that similar results can be obtained with a modified sum of squared errors loss function.

Learning with the proposed approach benefits from the integration of additional ‘‘unknown’’ samples, which are often

available, e.g., from open data sets, and can then be easily integrated into the learning process. We show that this open set

task augmentation can improve model performance even when these additional samples are rather few or far from the

domain of the target task. The proposed approach is demonstrated on two exemplary scenarios based on subsets of the

ImageNet and Food-101 data sets as well as with several network architectures and two loss functions. We further shed

light on the impact of the entropic open set loss on the internal representations formed by the networks. Open set task

augmentation is particularly valuable when no additional data from the target classes are available—a scenario often faced

in practice.
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1 Introduction

Machine learning algorithms have been a huge success in

the field of image classification, image recognition and

image processing. Many of these achievements in com-

puter vision are accomplished based on convolutional

neural networks (CNN) [24]. State-of-the-art algorithms

reach human-level or even superhuman performance [18].

This success is based on an enormous amount of training

data. In typical application scenarios, however, much less

data is available for training, which increases the risk of

overfitting when transferring models with many free

parameters to the target task.
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123

Neural Computing and Applications (2022) 34:6067–6083
https://doi.org/10.1007/s00521-021-06753-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0238-4437
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06753-6&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06753-6


In this context, two additional circumstances often

hamper the application of CNNs for image recognition

further:

Firstly, many applications have to deal with inputs from

an open set of classes while actions are supported only for a

finite set of classes. Then, the identification of inputs from

unknown classes becomes a requirement for the modeling,

which is known under the notion of open set classification

[2, 40]. For example, consider a smart camera oven that

supports automatic recognition and cooking of a set of food

items. In case a food item is placed inside the oven, for

which a cooking program is available, the appliance shall

suggest the respective program to the user. However, if the

food item is not supported, i.e., ‘‘unknown’’ to the oven, no

suggestion shall be displayed. Hence, the application needs

to identify unknown food items in order to reduce the false

positive rate.

Secondly, many applications require very domain-

specific discrimination of inputs. This typically means that

rather subtle changes in visual appearance shall be dis-

criminated. For the oven example, this is the case for dis-

tinguishing fresh from frozen food items like pizza that

look very similar but require different processing. Also in

other domains, e.g., monitoring the biodiversity of a par-

ticular group of animals (birds), such fine-grained classi-

fication tasks are of high practical relevance.

Fine-grained classification in combination with rather

small data sets can ultimately result in a high risk for

overfitting: While the model is tuned to discriminate small

changes in the inputs, training is based only on few

samples.

This paper addresses these challenges by proposing a

novel way how to utilize additional data for training that is

not directly related to the target task. The basic idea is to

rephrase the original classification task as an open set

classification task. We show that this open set task aug-

mentation can be useful even if the target application does

not require rejection of inputs from unknown classes. The

main idea of the paper is illustrated in Fig. 1.

In open set classification, the data can be separated into

samples from a set of known classes, here the classes of the

target task, and into samples from unknown classes, here

the additional data. The overall goal during inference is

twofold: Correct classification of the samples from known

classes and correct identification of samples from unknown

classes (rejection of these samples). For the purpose in this

paper, we only consider the incorporation of unknown

samples during training. That is, we augment the original

closed set classification task with the open set task during

training and investigate the impact on the generalization on

the original task during inference.

While there is a range of techniques available for open

set classification [16, 39–41], for our purpose it is essential

that the approach actually impacts the internal representa-

tion of the model during training. This requirement rules

out approaches to open set identification that solely are

based on a threshold selection, e.g., to reject samples based

on the distances to the nearest neighbors or neural activa-

tions of the classification layer after training. We therefore

employ the entropic open set loss (EOS, [10]) originally

proposed for open set classification tasks to supply the

training with additional data. The EOS loss enforces the

model to output small activations for all neurons within the

final classification layer (such that the entropy is maxi-

mized) if the samples belong to an unknown class. Hence,

the EOS loss actually shapes the internal representation of

the model formed during training and is a valid candidate

for the proposed approach.

Additionally, another candidate loss function for open

set task augmentation is considered in this work which is

an adaptation of the sum of squared errors (SSE) loss,

which we refer to as open set sum squared error (OSSE).

While not optimal for classification tasks, we show that this

loss can also be employed for open set task augmentation

by simply one-hot encoding targets for samples from

known classes and providing the zero vector for the addi-

tional samples from unknown classes.

We show that incorporation of additional data from

unknown classes using the EOS or OSSE can facilitate

generalization of the model compared to only using the

data from the known classes for training. We demonstrate

that the selection of the unknown classes is not critical and

argue that such data is often available, e.g., from open data

sets. We analyze the impact of the EOS loss on the internal

representation in more detail and show that it increases

both the sparsity of the neural activations and the weight

distribution of the upper network layers. We point out that

the proposed open set task augmentation can theoretically

be understood as regularization of neural activations in the

last layer for the additional input samples from the

unknown categories. We argue that open set task aug-

mentation results overall in more selective neural activity

in the higher network layers, i.e., more selective features,

which is also reflected qualitatively in more expressive

low-dimensional feature embeddings. Finally, our results

indicate that the technique is superior to incorporating

additional data from unknown classes via a so-called

background class, and we show that it can easily be inte-

grated in a transfer learning setup.

Hence, the proposed open set task augmentation is

highly relevant for many image recognition applications

for which only limited training data is available and that

require rather complex models for fine-grained classifica-

tion. Incorporation of ‘‘unknown’’ (task-unrelated) samples

via a recast of the original classification task as an open set

classification task can mitigate the risk of overfitting and

6068 Neural Computing and Applications (2022) 34:6067–6083

123



ultimately improve recognition accuracy. This work

therefore contributes to solving frequent challenges when

applying deep neural networks to custom image recogni-

tion scenarios. Overall, the contribution of this work entails

the introduction of the open set task augmentation frame-

work including two candidate loss functions together with

the empirical evaluation on multiple network architectures

and data sets. This paper moreover sheds light on the

impact of open set task augmentation on the learned

representations.

The paper is structured as follows: We first discuss

general strategies in related work to address the afore-

mentioned challenges. Section 3 introduces the method-

ological basis of the paper. Section 4 introduces the

experimental setup that is meant to be representative with

respect to many application scenarios for image recogni-

tion. Section 5 presents the main results of the paper and

investigates details concerning internal representations,

choice and required amount of ‘‘unknown’’ data. Section 6

discusses further aspects and concludes the paper.

2 Related work

In this section, we discuss general strategies to deal with

the typical challenges when training deep neural networks

from small-sized data sets.

Fig. 1 Classical approach (blue box): The images within the blue

rectangles represent inputs from the task-related (‘‘known’’) classes

that are used for model training in a classical closed set classification

setup. Open set task augmentation (red box): Utilize additional

samples from task-unrelated (‘‘unknown’’) categories for model

training by recasting the original closed set classification task to an

open set classification task. In this approach, the samples from

‘‘unknown’’ categories (images not contained in blue rectangles) are

incorporated in the model fitting in addition to the samples from the

known classes (Color figure online)
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2.1 Overfitting

Overfitting is a central phenomenon in machine learning

and describes the undesired state that the model is accu-

rately fit to the training data but cannot generalize well to

novel data. When fitting models with high model com-

plexity, i.e., many free parameters, using too few samples,

the trained model will likely suffer from overfitting.

This often occurs in modern image recognition appli-

cation scenarios where data is rather parsimonious (in the

order of few hundred samples per class) but high-dimen-

sional (high-resolution multi-channel images) at the same

time. Convolutional neural networks (CNNs) or otherwise

deep neural networks are nowadays the model of choice for

such applications when domain-specific feature engineer-

ing, e.g., based on computer vision techniques, is not suf-

ficiently available in order to preprocess the raw inputs.

While CNNs are the state of the art in many image

recognition tasks [21, 22, 25], they come with many free

parameters quickly in the range of millions. Hence, mod-

eling in these scenarios does basically mean to trade off

model complexity, which excellent deep feature extractors

have, with the means to mitigate overfitting.

A multitude of approaches are available to avoid over-

fitting. We refer to further discussions on how to tackle

overfitting, e.g., in [15, 47]. We here only focus on a few

selected approaches that are often applied in the context of

gradient-based training of deep neural networks.

Early stopping of the training when using gradient-based

learning algorithms is a common way to prevent overfitting

that has already been used in the 1970s [5, 37]. Another

approach to avoid overfitting is to reduce the network

complexity. This can be accomplished at the time of net-

work design by choosing smaller layer sizes or fewer

layers. Model complexity can also be reduced at or after

training by so-called pruning techniques [26]. For instance,

pruning can be accomplished by ranking the neural weights

by their importance w.r.t. to the input–output mapping and

then removing the weights that are ranked lowest [31].

Moreover, a frequently applied technique to avoid over-

fitting structurally is by introducing a bottleneck behind the

feature representation of the pretrained network [34]. A

bottleneck layer does effectively reduce the number of

features used for the final classification stage. A bottleneck

is often used in deep networks, e.g., in [10, 38].

Regularization is another core concept put forward to

tackle overfitting. A canonical regularization technique is

based on a L2 penalty for model parameters in the loss

function. In gradient-based learning, this penalty results in

a weight decay term for the weight update which forces the

model parameters to be smaller in norm. This effectively

reduces the model complexity by restricting the model to

learn smoother input–output mappings. By doing this, the

network can better generalize to new data and avoids

overfitting [23, 32].

Another form of regularization penalizes large neural

activations [15]. In contrast to classical weight regular-

ization, this activation regularization favors sparse over

dense representations which is advantageous for classifi-

cation [36]. It is therefore also referred to as sparse feature

learning or representation regularization. In contrast to

regularization of activations within the hidden layers of a

network and all samples, open set task augmentation can be

understood as activation regularization in the last layer for

the additional samples from the unknown categories. In

fact, open set task augmentation with the open set sum

squared error loss does implement an L2 penalty of the

neural activations in the last layer only for the added

samples.

A very common approach to address overfitting from

small data sets is to generate additional samples through

data augmentation techniques. Data augmentation denotes

the enhancement of the size and quality of training data

[42] in particular by adding slightly modified copies of the

available samples while preserving the original label [44]

or by adding otherwise synthesized data, etc. Hence, the

essence of common data augmentation is to generate more

inputs from the original data categories, e.g., with the help

of a domain-specific noise model. Our approach, in con-

trast, does add completely new input samples from other,

task-unrelated classes together with a dedicated schema to

formulate targets for these inputs. Hence, it does not solely

generate samples from the available source data from the

original categories as in common data augmentation, but

adds additional source samples from other classes and

additionally devises a strategy how to provide output tar-

gets for these samples. Hence, it does augment the task, not

solely the input data. Nevertheless, common data aug-

mentation techniques can and should be applied in addition

to the proposed open set task augmentation method at the

same time.

It has also been shown that extending the original

classification task to a multi-task learning setup using a

single network can improve generalization from small data

sets [1, 4, 27]. Here, the rationale is that the addition of

related tasks provides extra supervised information that

helps to form better features from which also the original

target task can benefit. Hence, converting the original

single classification task to a multi-task setup can be

understood as another kind of task augmentation. That is,

in contrast to data augmentation, where additional inputs

from the same classes are generated with the help of a

domain-specific noise model, task augmentation does

provide additional tasks in order to improve performance
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of the original target task. In fact, task augmentation is also

of recent interest in meta-learning, e.g., [35, 46], where

generation of additional tasks helps to later on generalize

better to novel tasks. However, whereas meta-learning does

target the generalization over tasks, open set task aug-

mentation does target better generalization on the original

task by incorporating additional input samples from other,

task-unrelated categories into the training.

In conclusion, typical ways to tackle overfitting are

based on using regularization, bottlenecks, early stopping

or data augmentation techniques. In this work, we explore a

way to overcome the overfitting problem by augmenting

the closed set classification task with an open set classifi-

cation task in order to incorporate additional data from

classes that are not task-related.

2.2 Open set classification

Another way of addressing overfitting is by making more

data available for the training. The main idea put forward

in this paper is based on recasting the original image

recognition task from small data sets to an open set clas-

sification task such that additional data not related to the

original task can be incorporated into the training. We

therefore briefly discuss here the main concepts of open set

classification.

Image recognition is classically defined as a closed set

classification (CSC) task: CSC means that the inputs, also

at inference time, belong to one of a finite set of classes. In

many real-world tasks, this assumption is not valid, i.e.,

inputs are drawn from a possibly infinite (open) set of

classes. Basically, open set classification requires to iden-

tify whether an input belongs to one of the known classes or

to an unknown class (open set identification). These sam-

ples can then be rejected during inference.

Dhamija et al. proposed a way to tackle the open set

problem by introducing a special loss function, namely the

entropic open set loss (EOS, [10]). The EOS loss is an

adaptation of the cross-entropy loss which enforces the

model to have only small softmax outputs in the last layer

for input samples from unknown categories. Then, the

maximal activation of the softmax layer is small for these

inputs and can be used for open set identification by a

simple thresholding mechanism. While we also employ the

EOS loss, our focus lies on its utilization for the purpose of

our proposed open set task augmentation scheme. Also, we

introduce an additional variant of an open set loss, the open

set sum squared error (OSSE).

2.3 Fine-grained classification

Fine-grained visual classification is a common task in the

image recognition field. Differentiating between animal

species or similar looking food items is not a trivial task to

accomplish. Different prior works deal with such tasks by

proposing diverse solutions. Trilinear Attention Sampling

Network (TASN) [48] is a method that uses a CNN to

solve such tasks. This network includes three modules,

namely a trilinear attention module to localize the details

presented in the input, an attention-based sampler to extract

these different details, and a feature distiller to optimize the

details and use them for the classification task. Bilinear

CNN [29] is another related work. Two parallel CNNs are

trained and each one of them extracts different features

from the inputs. The different features obtained from both

networks are pooled as an outer product and then piped

through a linear and softmax layer in order to get the

prediction of the network. This idea is later on improved by

a kernel pooling method [8]. Instead of using the 2nd order

of the features, higher-order feature maps are extracted and

used with the help of this algorithm. Higher-order feature

maps give a better classification accuracy in comparison to

the bilinear CNN [8]. Compact Bilinear Pooling [11] is

another approach that upgrades the bilinear CNN. Instead

of having high dimensions of bilinear features, this paper

proposes two representations of only a few thousands of

features. These two representations support back-propaga-

tion for end-to-end visual tasks.

We take a different stance here and argue that a main

driver for the difficulty of fine-grained classification from

small data sets is primarily due to overfitting complex

models to the data. Due to the inherent characteristics of

fine-grained classification tasks that similar inputs require

different classifications enforces a high sensitivity of the

model to changes of the input also in cases where this is

undesired. Ultimately, the model does not generalize. Our

contribution in this paper consists of showing that with

open set task augmentation, models can still learn fine-

grained, class-specific features but also generalize better to

novel data.

3 Open set task augmentation

We start off from describing the targeted closed set clas-

sification task sc: Let Dk ¼ fðx; cÞg be the set of supervised
input-target pairs drawn from a finite set of known classes

K ¼ fcig; i ¼ 1; . . .;C. Goal of the modeling is to classify

ĉðxÞ for novel input samples x such that ĉ ¼ c in order to

solve the closed set classification task sc.
Let further be Du ¼ fðx; ~cÞg a set of additional input

samples from task-unrelated, unknown classes U ¼ f~cg,
where U \ K ¼ ;. The key idea of this paper is to utilize

the joint set D ¼ Dk [ Du for training a model that solves

the closed set classification task sc. We refer to this
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approach as Open Set Task Augmentation (OSTA). The

proposed method is illustrated in Fig. 1.

We remark here that it may be also of interest from an

application point of view to reject (identify) inputs from

unknown classes during inference time. This open set

identification task so poses a binary classification problem

that discriminates input samples that belong to a class

~c 2 U . For the purpose of this paper, however, we are

solely interested in the impact of adding samples from task-

unrelated, unknown categories to the training set on the

performance of the closed set classification task sc.
In order to incorporate the additional samples Du in the

model training, we propose to use an adapted version of the

cross-entropy loss [17] (log loss) function, namely the

entropic open set loss (EOS, [10]). The EOS loss was

originally defined as

JEðxÞ ¼
� logðScðxÞÞ if x 2 Dk is from class c

� 1

C

XC

c¼1

logðScðxÞÞ if x 2 Du

8
><

>:
;

ð1Þ

in [10], where ScðxÞ is the softmax output of the neuron c.

The EOS reduces to the standard cross-entropy loss if there

are no samples in Du. When samples from unknown cat-

egories are present in Du, the EOS loss (1) is minimized for

these samples if all activations in the softmax output layer

have small values. This corresponds to a maximum entropy

distribution of the outputs for these samples, hence the

name entropic open set loss.

The EOS can be rephrased as

LEOS ¼ Ck þ Ru; ð2Þ

where Ck ¼ �
P

x2Dk
logðScðxÞÞ is the cross-entropy loss

for all samples from known categories in Dk and Ru ¼
� 1

C

P
x2Du

PC
c¼1 logðScðxÞÞ can be interpreted as activation

regularization for samples from unknown categories.

Analogously, we define the open set sum of squared

errors loss function (OSSE) by

LOSSE ¼ Ek þ Eu; ð3Þ

where E� ¼ 1
2

P
x2D�

PC
c¼1ðyc � ŷcðxÞÞ2 is the sum of

squared errors, y ¼ ðy1; . . .; yCÞT is the vector with target

activations, and ŷðxÞ the respective network output in the

last layer. Ek in (3) computes the sum of squared errors for

samples from known categories in Dk, where y are vectors

with one-hot encoded targets. For the samples from

unknown categories in Du, we set the target activations

y ¼ 0 to zero. Then, the term Eu in (3) reduces to 1
2
jjbYjj2,

where bY is the matrix composed of all output vectors ŷ for

samples in Du from the unknown categories. Hence, the

term Eu in (3) can be understood as activation

regularization of the output layer for these samples similar

to Ru in (2).

While we do not propose to use the sum of squared

errors Ek for classification in practice, we investigate in this

paper whether the principle benefit of open set task aug-

mentation can also be observed with an alternative loss

function different to the EOS loss. For this purpose, we

compare in the following experiments the results of train-

ing networks with or without open set task augmentation.

For the sake of brevity, we use the following notion in the

subsequent sections: We denote models that are trained

only on a set of samples from the known classes K as

‘‘models trained only with known data’’ and, likewise,

models that are trained on samples also from the unknown

classes as ‘‘models trained with known and unknown

data.’’

4 Experimental setup

Our experimental setup aims at showing that training with

additional data from non-task-related classes (samples

from ‘‘unknown’’ classes in the terminology of open set

classification) can boost the performance of deep classifiers

and reduce the overfitting of the network. We therefore

devise an experimental setup that is in many respects

representative for typical image recognition application

scenarios, including the scenario for the recognition of food

items in domestic ovens as outlined in the introduction.

The main experimental design features the following

properties:

– High-Dimensional Data: 3-channel RGB images of

size 224� 224.

– Data Set Size: A rather small sample size of jDkj ¼
23:525 images from known classes and jDuj ¼ 17:289

images from unknown classes.

– Fine-grained Classification: K comprises C ¼ 29

known classes that are similar in visual appearance

(details below).

– Backbone Network: ResNet-50 [12], a common net-

work architecture for transfer learning.

In addition, we conduct further experiments with two other

backbone networks (MobileNet [13] and EfficientNet-B4

[43]), another classification task based on the Food-101 [3]

data set, and also compare the two different loss functions

EOS and OSSE in order to test the robustness of the open

set task augmentation scheme.

4.1 Task and data set

We use a subset of the database ImageNet [9] for the

majority of our experiments. The choice of the
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subcategories for the known and unknown sets is done

manually. We picked classes that are visually and biolog-

ically similar. We use different carnivore subcategories for

the known set (i.e., canidae and felidae) posing a rather

fine-grained classification scenario. For example, the

picked classes entail different cat, dog, wolf breeds, etc.

The set of known classes K comprises C ¼ 29 subcate-

gories1 in total with overall 23.525 images.

For the set of samples Du from unknown classes, images

of other animal categories are used, e.g., monkeys, ele-

phants, rabbits, etc. We picked 22 subcategories2 as

unknown categories U with 17.289 images in total. We

denote the data with these unknown categories as ‘‘close to

the domain.’’

In a later experiment, we substitute the unknown data

Du with other, far from domain data. These classes belong

mostly to the ‘‘Misc’’ group according to the ImageNet

taxonomy in contrast to the animal group used in the other

experiments of this work. We manually picked 23 far from

domain subcategories3 that are for example objects of daily

life such as acoustic guitar, electric guitar, hammer and car

mirror. Hence, these far from domain, unknown classes are

visually not connected to the known or the unknown

classes. The total size of the picked images is equal to

17.193. We denote this data as ‘‘far from domain.’’

The sample size for each class used in this work varies

between 304 and 1.165 samples with an average of 811

instances. These sizes are meant to correspond with the

ranges that are typically apparent in machine learning

application scenarios with small-sized data sets. The

known and unknown data (close and far from domain) are

split into training (80%), validation (10%) and test set

(10%). This split is identical for all conducted experiments.

Inputs are preprocessed by resizing the RGB images to a

fixed size of 224�224 pixels. Moreover, we performed a

common, randomized data augmentation step. Images are

vertically flipped (left to right) with a probability of 50%.

Pictures are then shifted up to 20 pixel rows/columns left,

right, up or down with a probability of 12.5% each. Next,

images are rotated (by 90�, 180� or 270�) with a probability
of 12.5% each. Finally, a Gaussian blurring is applied with

a kernel size of 5�5 and 50% probability.

4.2 Network training

In the majority of the conducted experiments, a residual

network (ResNet) [12] is used as a backbone network.

Mainly, networks with 50 residual layers are used (ResNet-

50). However, for the evaluation of specific aspects, net-

works with 18 residual layers (ResNet-18) are also trained.

Network weights are randomly initialized if not otherwise

stated.

In this work, gradient descent is conducted using the

Adam optimizer [19] with a learning rate of 0.001. We use

a mini-batch size of 64 and train the networks for 150

epochs. In each iteration, we validate the model perfor-

mance on samples from the known categories K only by

means of the accuracy (percentage of correctly classified

known samples). This corresponds to an evaluation of the

model solely on the closed set classification task sc. After
training, we select the model from the epoch with the

maximum accuracy on the validation set.

Hyper-parameters like learning rate and number of

epochs have been manually tuned such that the gradient

descent displays a clear convergence to a local minimum in

a typically shaped learning curve. All experiments are

repeated three times each in order to account for random

factors in model training.

5 Results

In the following sections, we present the experimental

results that target at answering the following questions:

– Section 5.1: How does the utilization of unknown

samples compare to the baseline at which only known

samples are used for training?

– Section 5.2: How does the amount of unknown data

impact the training?

– Section 5.3: How critical is the choice of the unknown

data?

– Section 5.4: How does the approach relate to the choice

of the model complexity / representational capacity?

– Section 5.5: Does the observed benefit of open set task

augmentation transfer to other tasks, network architec-

tures and loss functions?

– Section 5.6: How does the proposed approach compare

to using a background class?

1 Synset subcategories of ImageNet [9] picked as known categories:

n02123159, n02509815, n02124075, n02123394, n02123045,

n02123597, n02497673, n02111277, n02110341, n02109961,

n02106662, n02116738, n03218198, n02129165, n02125311,

n02129604, n02128385, n02128757, n02128925, n02114548,

n02114712, n02114855, n02114367, n02119022, n02120079,

n02120505, n02119789, n02127052, n02117135.
2 Synset subcategories of ImageNet [9] picked as unknown cate-

gories close to the target domain: n02134418, n02510455,

n02134084, n02132136, n02133161, n02441942, n02447366,

n02444819, n02445715, n02508021, n02137549, n02138441,

n02325366, n02328150, n02494079, n02493509, n02486261,

n02488702, n02489166, n02484975, n02504458, n02504013.
3 Synset subcategories of ImageNet [9] picked as far from domain:

n02676566, n03272010, n03481172, n02965783, n03895866,

n04037443, n02814533, n03393912, n02918964, n04005630,

n03376595, n02727426, n04081281, n03032252, n03379051,

n01484850, n03180011, n03793489, n03642806, n03085013,

n01770393, n11955896, n04555897.
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– Section 5.7: Does the proposed approach contribute to

common transfer learning setups?

5.1 Training with known and unknown data

5.1.1 Training results

First of all, we empirically investigate the impact of using

unknown data along with the known data. Can the addi-

tional data improve the accuracy of the network and reduce

overfitting in comparison to simply training on samples

from the known categories?

For this purpose, two networks with the same architec-

ture were trained. The first network uses only the known

training set and a cross-entropy loss function. The second

network uses in addition the unknown training set and the

entropic open set (EOS) loss.

Table 1 shows an improvement of the accuracy on the

test set when incorporating the additional samples from the

unknown categories in the training. The average

improvement is 3.5%. Based on these results, we deduce

that auxiliary unknown data can improve generalization

performance of networks using the entropic open set loss.

5.1.2 Impact of training on internal representation

In a next step, we analyze the internal representation of the

networks. For this purpose, we calculated the Hoyer

sparseness measure [14] for the last average pooling layer

for each sample of the known test set. Hoyer’s sparseness

measure is defined by

sparseness ðxÞ ¼
ffiffiffi
n

p
�

P
xij jð Þ=

ffiffiffiffiffiffiffiffi
Rx2i

p
ffiffiffi
n

p
� 1

; ð4Þ

where xi is the activation of the ith neuron in the layer and

n the size of the layer. In our case, x is the last average

pooling layer, which has 2.048 neurons.

Figure 2 shows that the neural networks trained on

known and unknown data display more sparse neural

activations in the last average pooling layer. Networks

trained with the additional samples from unknown classes

with the help of the entropic open set loss display signifi-

cantly more sparse neural activations in this layer (two-

sided Kolmogorov–Smirnov test comparing the combined

sparsity value distribution from all runs trained with known

data with the distribution from all runs trained with known

and unknown data; p\0:001).

We further investigate the distribution of the neural

activations for each training run for the last two layers in

more detail. Figure 3 displays the distribution of the neural

activations for the last average pooling layer (second-last

layer) on all known samples from the test set with a log-

arithmically scaled ordinate axis. The results in Fig. 3

show that the activations in the average pooling layer are

more sparsely distributed for the networks trained with the

known and unknown data. This observation is consistent

over all runs and corresponds to the Hoyer sparsity values.

Figure 4 displays the distribution of the neural activa-

tions for the last dense layer (before softmax). The impact

of the additional data together with the entropic open set

loss is also for this layer evident for all conducted runs of

the experiments: The peak of the neural activations is more

narrow and located at smaller absolute activation values for

these networks.

Overall, these results indicate that the additional data

together with the entropic open set loss systematically

impacts the internal representation of the classifier net-

works to form more sparse encodings. Sparse representa-

tions are known to be beneficial in neural processing

[28, 33] and can facilitate class separability (e.g., [45]).

The increased sparseness of the neural representation can

be explained by the term Ru in (2) which acts as activation

regularization for the samples Du from unknown cate-

gories. Interestingly, Ru affects the overall sparseness of

the neural representation also for the samples from known

categories as evident from Figs. 2, 3 and 4.

We assess the impact of the additional data on the

formed representation qualitatively by visualizing the fea-

ture vectors. The original feature vectors of the second-last

layer (average pooling layer) have 2048 components. We

use t-Distributed Stochastic Neighbor Embedding (t-

SNE, [30]) in order to visualize the high-dimensional

feature vectors in two dimensions. Figure 5 delivers qual-

itative information about the internal representation formed

by the different networks. It shows the embedded feature

vectors for all test samples from the known classes. From

the second row of Fig. 5, it can be clearly seen that feature

vectors from different classes can be better clustered when

networks are trained with additional unknown data com-

pared to networks which are trained solely with samples

from the target classes (cf. upper row of Fig. 5). Hence,

Table 1 Test accuracies of

networks on samples from the

known classes

Training data Accuracy

1st Run 2nd Run 3rd Run Mean value

Known data only 64.7% 64.6% 65.8% 65.0%

Known and unknown data 68.7% 68.9% 67.8% 68.5%
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Fig. 2 Hoyer sparsity values of

the last average pooling layer

for all known samples in test set

Fig. 3 Distribution of the

activation values of the last

average pooling layer for all

known samples in test set. The

combined activation value

distribution of all runs trained

with known data differs

significantly from the combined

distribution of all runs trained

with known and unknown data

(two-sided Kolmogorov–

Smirnov test; p\0:001)

Fig. 4 Distribution of the

activation values of the last

dense layer (before softmax) for

all known samples in test set.

The combined activation value

distribution of all runs trained

with known data differs

significantly from the combined

distribution of all runs trained

with known and unknown data

(two-sided Kolmogorov–

Smirnov test; p\0:001)
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Fig. 5 indicates that the additional data together with the

entropic open set loss does impact the learned representa-

tion of inputs such that separability of classes in the top

feature layer is fostered.

Finally, we investigate the data distribution of the

weights between the second-last and last layer (2.048�29

matrix). Figure 6 shows the weight distribution for the

different runs. Also, here we observe a distinct shape of the

weight distributions for the two different training

Fig. 5 T-SNE embeddings of the neural activations in the last average

pooling layer for all known samples in test set. Ground truth class

labels are color-coded. Top row: Embeddings for three networks

trained only with samples from the known classes. Bottom row:

Embeddings for three networks trained with additional samples from

unknown categories.

Fig. 6 Distribution of the

weights of the last dense layer.

The combined weight

distribution of all runs trained

with known data differs

significantly from the combined

distribution of all runs trained

with known and unknown data

(two-sided Kolmogorov–

Smirnov test; p\0:001)
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conditions. The networks trained with known and unknown

data have more inhibitory connections to the last layer,

which may be due to the effective activation regularization

of the entropic open set loss: It enforces the network to

have smaller neural activations in the output layer for

samples from unknown classes.

5.2 Increasing the amount of unknown data

In practice, it is often not easily possible to increase the

amount of labeled data for the known classes. Increasing

the amount of unknown data in open task augmentation is

in contrast more easily possible. However, it remains open

how many samples from unknown categories are required

to improve the accuracy on the primary target task sc.
In order to investigate the impact of the sample sizes of

the unknown data, we trained networks with different

amounts of unknown training data. We consider four

additional experimental conditions where we use 10%,

25%, 50% or 75% of the unknown data used in the pre-

vious experiments. Table 2 shows the results for each

training run in detail. The results are also displayed with

error bars over the different training runs in Fig. 7. The

results in Table 2 and Fig. 7 show that the network training

already benefits from a rather small amount of additional

data.

5.3 Impact of choice of the unknown samples

Besides the amount of samples from unknown categories, it

is of interest how the characteristics of these additional

samples impact the training results. To shed light on this

question, we replace the close of domain unknown data,

used in the training in the preceding sections, with far of

domain unknown data (introduced in Sect. 4.1). The other

parameters of the experimental settings remain unchanged.

The results are presented in Table 3 and confirm the

previous results: Also with unknown data more far from

the domain of the target task, training benefits from this

additional data and shows significantly increased accuracy

on the test set (improvement of 14.0%). It seems to be

actually more beneficial to use this far from domain data

compared to the close to domain data from the previous

experiments even though the difference is small (cf. results

from Tables 1 and 3). However, it remains open which

characteristics of the unknown data are beneficial for the

training.

5.4 Reducing the representational capacity

In this section, we investigate how the proposed approach

relates to other means to improve generalization from small

data sets. Firstly, one could argue that the ResNet-50

simply overfits the data due to the large model complexity

and the additional data just acts as a kind of regularization.

Thus, the question is if the additional data is also helpful in

case of a smaller network which does not require as much

regularization as the large network for proper generaliza-

tion. Secondly, the representational complexity of the large

ResNet-50 could also be reduced by introducing a bottle-

neck layer before the classification stage. The paper [10]

that originally introduced the entropic open set loss did

actually report results only for networks with a bottleneck

layer. From this previous work, it remained open whether

the bottleneck is an important ingredient for the entropic

open set method to work properly. One can already con-

clude from the results in the preceding sections that this is

not the case. However, the open question is if the combi-

nation of bottleneck and additional data yields even better

results than additional data alone.

We therefore first trained smaller ResNet-18 networks

[12] with 18 residual layers with both conditions (only

known and known plus unknown data). The ResNet-18 has

obviously a significantly reduced model complexity with a

smaller number of free parameters compared to the

ResNet-50. The ResNet-18 has approximately 11 million

free parameters, whereas the ResNet-50 has approximately

23 million free parameters. The results in Table 4 show

that the reduced model complexity indeed increases the

generalization accuracy when trained from known data

only (cf. results for ResNet-18 and ResNet-50 trained on

known data only). This confirms the typical issue of

overfitting when training large networks from small, fine-

Table 2 Test accuracies of

networks on samples from the

known classes

Training data Accuracy

1st Run 2nd Run 3rd Run Mean value

Known data only 64.7% 64.6% 65.8% 65.0%

Known and 10% of the unknown data 66.6% 66.3% 68.8% 67.2%

Known and 25% of the unknown data 67.2% 69.1% 69.9% 68.7%

Known and 50% of the unknown data 69.2% 68.4% 68.2% 68.6%

Known and 75% of the unknown data 68.3% 70.8% 67.7% 68.9%

Known and all unknown data 68.7% 68.9% 67.8% 68.5%
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grained data sets. However, already with this smaller net-

work, we observe a slight improvement of the generaliza-

tion ability when the additional unknown data is

incorporated into the training.

Another way of restricting the representational capacity

of a model is to introduce a bottleneck layer before the

classification stage, while the previous network layers may

still be of larger size. To illustrate this, we introduce a

bottleneck layer with 5 neurons to the ResNet-50 between

the average pooling layer (2.048 neurons) and the last

dense layer. An illustration of this network can be found in

Fig. 8. We manually selected the size of the bottleneck

layer by conducting experiments with 2, 3, 5 and 10 neu-

rons in the bottleneck beforehand. A bottleneck of 5

neurons was optimal under the tested bottleneck sizes with

regard to the validation accuracy.

The results of the trained ResNet-50 networks with

bottleneck (5 neurons) are presented in Table 5. Indeed the

bottleneck does effectively help to prevent overfitting by

restricting the feature representation for classification to,

e.g., 5 dimensions when training only on the known data

(e.g., compare results for ResNet-50 trained only on known

data in Table 1 without bottleneck and with bottleneck in

Table 5). But also for the larger networks with bottleneck

the additional data significantly improves the generaliza-

tion performance (Table 5).

Overall, these results show that the proposed open set

task augmentation does consistently improve generaliza-

tion also under conditions with less complex models or

Fig. 7 Test accuracies for

networks trained with different

amounts of unknown data. The

minimum, mean and maximum

accuracy are depicted for each

percentage of unknown data

Table 3 Test accuracies of

networks on samples from the

known classes

Training data Accuracy

1st Run 2nd Run 3rd Run Mean value

Known data only 64.7% 64.6% 65.8% 65.0%

Known and unknown data (far from domain) 69.8% 68.2% 69.1% 69.0%

Table 4 Test accuracies for

ResNet-18 networks
Training data Accuracy

1st Run 2nd Run 3rd Run Mean value

Known data only 68.6% 68.0% 70.0% 68.9%

Known and unknown data 69.6% 69.0% 69.7% 69.4%

Fig. 8 ResNet architecture derived from the original ResNet paper [12] and edited by adding a bottleneck of 5 neurons before the last layer
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reduced representational complexity (bottleneck). We

emphasize the practical relevance of being able to utilize

the additional model complexity when training models

from small data sets by simply adding task-unrelated data

to the training.

5.5 Robustness of observed effect

This section shows that the benefit of open set task aug-

mentation (OSTA) observed in the previous experiments

does also transfer to other tasks, network architectures and

loss functions.

For this purpose, we train two other frequently used

networks, namely MobileNet [13] and EfficientNet-B4

[43], on the previous task setup. In addition, we not only

employ the EOS loss in training, but also the OSSE loss in

order to show that the concept of open set task augmen-

tation does not entirely depend on the EOS loss function.

All results are reported in Table 6. Mean values in Table 6

are calculated over three trials for each experiment.

Table 6 shows that the generalization ability of the trained

networks can also benefit from open set task augmentation

when using the OSSE loss (cf. condition ‘‘known data

only’’ versus ‘‘known and unknown data’’ when using the

OSSE loss). Also, this positive effect of open set task

augmentation does show independent of the chosen net-

work architecture in Table 6.

Moreover, we investigated the robustness of the OSTA

method on another classification task based on a subset of

the Food-101 [3] data set. For the known classes we picked

20 food categories4. The training set comprises 16.000

images. Test and validation set have 2.000 samples each.

Another 15 food categories5 are then picked to build the

unknown categories. The task-augmented training set

comprises 12.000 samples from these unknown categories.

We trained each network architecture (ResNet-50 [12],

MobileNet [13] and EfficientNet-B4 [43]) three times each

using the EOS loss and the OSSE loss and calculated the

mean value of the accuracy. All results for the Food-101

task are presented in Table 7 and confirm the results from

the previous experiments based on the ImageNet data set:

OSTA can improve the generalization ability when training

deep networks from small data sets for a range of network

architecture.

Both result Tables 6 and 7 show that the benefit of open

set task augmentation can be robustly observed under a

Table 5 Test accuracies for

ResNet-50 networks with

bottleneck (5 neurons)

Training data Accuracy

1st Run 2nd Run 3rd Run Mean value

Known data only 69.3% 70.5% 69.6% 69.8%

Known and unknown data 72.8% 70.6% 72.2% 71.9%

Table 6 Mean test accuracies

averaged over three independent

training runs for different

network architectures (ResNet-

50, MobileNet, EfficientNet-B4)

and loss functions (EOS, OSSE)

on the ImageNet subset

introduced in Sect. 4.1

Model Loss function Training data Accuracy

Mean value Difference

Known data only 65.0%

EOS Known and unknown data 68.5% 13.5%

Known data only 61.4%

ResNet-50 OSSE Known and unknown data 67.3% 15.9%

Known data only 70.1%

EOS Known and unknown data 73.9% 13.8%

Known data only 71.9%

MobileNet OSSE Known and unknown data 74.7% 12.8%

Known data only 73.2%

EOS Known and unknown data 75.2% 12.0%

Known data only 73.5%

EfficientNet-B4 OSSE Known and unknown data 75.0% 11.5%

4 Categories of Food-101 [3] picked as known categories: apple_pie,

carrot_cake, strawberry_shortcake, cheesecake, chocolate_cake,

lasagna, pizza, caesar_salad, caprese_salad, seaweed_salad, chick-

en_wings, fish_and_chips, french_fries, fried_calamari, maca-

roni_and_cheese, spring_rolls, spaghetti_carbonara,

spaghetti_bolognese, steak, baby_back_ribs.
5 Categories of Food-101 [3] picked as unknown categories: baklava,

churros, donuts, falafel, ice_cream, omelette, macarons, hot_dog,

paella, escargots, french_onion_soup, ramen, mussels, tacos, sushi.
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broader range of conditions: When open set task augmen-

tation is applied, a consistent improvement of the gener-

alization ability can be observed for various network

architectures and under change of the loss function or the

data set.

As statistical test, a four-way ANOVA was carried out

on all data from Tables 6 and 7. The ANOVA takes the

experimental factors (1) data set, (2) model, (3) loss

function and (4) training data (‘‘only known’’ vs. ‘‘known

and unknown’’) into account to predict the accuracy as

dependent variable. The sample size in each group

amounted to three. We are mainly interested in the main

effect of the factor training data. The full ANOVA

including all interactions gave F ¼ 93:7; p � 0:001 for

this main effect, while nearly all interactions that include

this factor were not significant (p[ 0:05) with one

exception: The interaction between model and training data

yielded F ¼ 4:5; p\0:05. After removing all insignificant

interactions from the ANOVA, these results persist at the

same levels of significance.

Regarding the preconditions for ANOVA: The Levene

test (using the median as center) resulted in p ¼ 0:78.

Therefore homogeneity of variances can be assumed. The

Shapiro test (reg. the normal distribution of the residual

values) was not significant at the 1% level. Therefore the

assumption of a normal distribution still holds in our view.

In summary, the most important preconditions for ANOVA

are given.

The statistical results corroborate our claim that open set

task augmentation has a consistently positive effect on

classification accuracy. We finally show in the next section

that the benefit of OSTA also persists when it is applied in

a transfer learning setup.

5.6 Comparison of OSTA to using a background
class

Another approach to incorporate samples from unknown

classes into the training is by using an additional ‘‘back-

ground’’ class to which all the samples from the unknown

classes are assigned during training [6, 7, 10]. Then,

training can simply be accomplished as closed set classi-

fication task. At inference time, one then can simply dis-

card the outputs for the background class, e.g., by

removing the corresponding neuron from the output layer,

if one is only interested in the closed set classification task

sc as it is the case for our considerations in this paper.

In this section, we empirically show that the proposed

open set task augmentation differs from this method. For

this purpose, we trained ResNet-50 [12] networks on the

ImageNet and Food-101 subsets as before, but incorporate

the samples from the unknown classes as additional cate-

gory with dedicated output neuron. Training then proceeds

as before but now using the standard cross-entropy loss. In

the inference phase, the neuron of the background class is

removed.

The results presented in Table 8 show that there is a

significant difference between the two conditions OSTA

with EOS loss and using a background class only. The

OSTA method achieves an improvement of 11.7% for the

ImageNet data set and 15.5% for the Food-101 data set

compared to using the background class approach (see

Table 8).

This difference can be explained by the different train-

ing objectives formulated by the cross-entropy with back-

ground class and OSTA with EOS loss: In the background

class condition, only the output of the neuron correspond-

ing to the target class (one of the known classes or the

unknown class) is maximized by the loss function for all

Table 7 Mean test accuracies

averaged over three independent

training runs for different

network architectures (ResNet-

50, MobileNet, EfficientNet-B4)

and loss functions (EOS, OSSE)

on the subset of the Food-101

data set

Model Loss function Training data Accuracy

Mean value Difference

Known data only 73.6%

EOS Known and unknown data 77.2% 13.6%

Known data Only 65.2%

ResNet-50 OSSE Known and unknown data 69.0% 13.8%

Known data only 76.0%

EOS Known and unknown data 79.1% 13.1%

Known data only 77.1%

MobileNet OSSE Known and unknown data 79.0% 11.9%

Known data only 77.6%

EOS Known and unknown data 80.3% 12.7%

Known data only 79.3%

EfficientNet-B4 OSSE Known and unknown data 80.6% 11.3%
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samples. Outputs of the other neurons are not penalized. In

the OSTA condition, any deviation from a low, constant

activation level is penalized for all output neurons for

samples from the unknown class while the output of the

neuron corresponding to the target class is maximized only

for samples from the known classes. Hence, the difference

between the output activations for samples from unknown

classes (constantly low) in comparison to the output acti-

vations for samples from the unknown class (as high as

possible) is maximized. This favors more selective network

responses to known samples and makes the neural repre-

sentation more sparse as discussed earlier in Sect. 4.1.

Figure 9 shows that the sparsity of the representation in the

last average pooling layer is indeed significantly lower

compared to the OSTA condition.

5.7 Transfer learning

In modern image recognition applications based on deep

neural networks, typically transfer learning is applied. The

main idea is to benefit from the well-tuned feature

extractors previously trained on millions of images. These

previously acquired feature extractors, i.e., deep networks,

are then transferred to the target task at hand in order to

reduce training time and improve the final task perfor-

mance. In this section, we show that open set task aug-

mentation fits perfectly together with this common transfer

learning scheme.

We conducted the network training as before on the

ImageNet subset introduced in Sect. 4.1, but now initial-

izing the ResNets with weights pretrained on the ImageNet

data set [20]. The results in Table 9 show that initializing

training with a pretrained network on ImageNet is an

effective way to achieve higher accuracies on the target

task. More importantly, also when using transfer learning,

training does benefit from the additional unknown data. For

the considered task, we achieve an improvement of 2.4%

when incorporating the additional out of domain data

together with transfer learning starting from the pretrained

networks. We therefore conclude that open set task aug-

mentation with entropic open set loss can improve the

internal representation of the model and ultimately the final

task performance also in transfer learning setups.

Table 8 Test accuracies of

networks on samples from the

known classes

Data set Method Accuracy

1st Run 2nd Run 3rd Run Mean value Difference

Background class 68.5% 67.0% 65.0% 66.8%

ImageNet OSTA 68.7% 68.9% 67.8% 68.5% 11.7%

Background class 69.6% 74.0% 71.7% 71.7%

Food-101 OSTA 77.8% 78.2% 75.6% 77.2% 15.5%

Training is conducted with known and unknown data either by open set task augmentation with the entropic

open set loss (OSTA) or by using a background class and the cross-entropy loss (Background Class). An

ANOVA with the two experimental factors ‘‘data set’’ and ‘‘method’’ (‘‘OSTA’’ vs. ‘‘background class’’)

yielded significant main effects (for ‘‘method’’: F ¼ 14:6; p\0:01) and a nonsignificant interaction effect

Fig. 9 Hoyer sparsity values of

the last average pooling layer

for all known samples in test set

when training the network with

known data only (blue), with

known and unknown data using

OSTA (red) or a background

class (green). The combined

sparsity value distribution of all

runs using OSTA differs

significantly from the combined

distribution of all runs using a

background class (two-sided

Kolmogorov–Smirnov test;

p\0:001) (Color figure online)
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6 Discussion and conclusion

The open set task augmentation scheme proposed in this

paper requires additional, auxiliary data. From the reported

results, the selection of the additional data is not critical

unless it stems from categories disjoint from the classes of

the target task. We could so far not identify the charac-

teristics of the unknown data which are required to support

the learning. We expect that a certain similarity to the

target task is important. This question points out an inter-

esting direction for future research.

In the prior works discussed in Sect. 2.2, the core use of

the unknown data is to tackle open set classification tasks.

Also, the EOS loss has been originally proposed in [10] to

handle open set classification. Our contribution is the

introduction of the open set task augmentation scheme by

utilizing, e.g., the EOS loss in order to incorporate

unknown data into the task-augmented training. We

empirically show that this open set task augmentation can

reduce overfitting and improve the performance on closed

set classification tasks.

With this approach, it is still possible to address the open

set identification problem and to reject unknown samples

by simply defining a suitable threshold value (e.g., see [10]

for details). We therefore rate this approach as very

attractive for practical application scenarios because it

combines two advantages: improved generalization per-

formance and the option to identify task-unrelated inputs

during inference. The latter is relevant for the robust

operation of many machine learning applications. Yet, we

point out here that in this context of open set identification,

the choice of the unknown classes is more intricate. For

instance, picking classes, which are visually close to the

domain of the known categories, can be expected to yield

more strict rejection of inputs from other categories (small

margin). Nevertheless, rather randomly picked unknown

categories can be still expected to result in decent open set

identification yet with a larger margin of accepted inputs.

In summary, this paper sheds light on an approach that

can improve generalization on fine-grained classification

tasks when training from small data sets. We showed that

training the network with auxiliary unknown data and the

EOS loss tends to make the internal network representation

more sparse. The improvements achieved with the pro-

posed approach are robust over different parameters like

the network structure and the choice of unknown data. The

presented method does well integrate with the state-of-the-

art transfer learning strategy.
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