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Abstract

Human manipulation skills represent a pinnacle of their voluntary motor functions, requiring the
coordination of many degrees of freedom and processing of high-dimensional sensor input to achieve
such a high level of dexterity. Thus, we set out to answer whether the human hand, with its associated
biomechanical properties, sensors, and control mechanisms, is an ideal that we should strive for in
robotics—do we really need anthropomorphic robotic hands?
This survey can help practitioners to make the trade-off between hand complexity and potential
manipulation skills. We provide an overview of the human hand, a comparison of commercially available
robotic and prosthetic hands, and a systematic review of hand mechanisms and skills that they are
capable of. This leads to follow-up questions. What is the minimum requirement for mechanisms and
sensors to implement most skills that a robot needs? What is missing to reach human-level dexterity?
Can we improve upon human dexterity?
Although complex five-fingered hands are often used as the ultimate goal for robotic manipulators,
they are not necessary for all tasks. We found that wrist flexibility and finger abduction/adduction are
important for manipulation capabilities. On the contrary, increasing the number of fingers, actuators, or
degrees of freedom is often not necessary. Three fingers are a good compromise between simplicity and
dexterity. Non-anthropomorphic hand designs with two opposing pairs of fingers or human hands with
six fingers can further increase dexterity, suggesting that the human hand may not be the optimum.
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1 Introduction

The human hand is often used as the gold stan-
dard or goal for robotic manipulation and haptic
perception. Robots with anthropomorphic hands
that are capable of complex manipulation skills

are often used to illustrate sophisticated robotics
and artificial intelligence.

However, despite our fascination for anthro-
pomorphic robotic hands, the trend in industrial
applications and robotic challenges is to use simpler
designs consisting of parallel grippers or suction
cups. This trend is not necessarily only due to the
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complexity of matching the human hand’s dexter-
ity, robustness, and perceptual capabilities, but
perhaps also to the reality that anthropomorphic
hands might not be required to manipulate effi-
ciently. For instance, the winner of the Amazon
Picking Challenge used an end effector based on a
suction system (Piazza et al. 2019). In the DARPA
Robotics Challenge, 15 of 25 teams used an under-
actuated hand with three or four fingers, while
none of the remaining ten teams used a fully actu-
ated anthropomorphic hand (Piazza et al. 2019).
This trend is also observed in assistive technologies,
e.g., in the Cybathlon, which is a global challenge
organized by ETH Zurich to develop assistive tech-
nologies suitable for everyday use for people with
disabilities: the winner of the Powered Arm Pros-
thesis Race used a body-powered hook (Piazza et al.
2019). Furthermore, birds are often able to perform
complex manipulations, such as nest building, just
with their beaks (Sugasawa et al. 2021).

In contrast to these observations, we can see
that humans often use more than one hand with
five fingers to solve complex manipulation tasks,
e.g., tying shoe laces. This observation suggests
that having only one opposable thumb and five
fingers may not be sufficient for solving this task.
This hypothesis is supported by the fact that there
are people with six-fingered hands who can tie shoe
laces with just one of their hands and achieve supe-
rior manipulation abilities in several other tasks
(Mehring et al. 2019). When we design new robotic
hands from scratch, we could improve the dexter-
ity, flexibility, and versatility of the mechanism, for
instance, by introducing two opposable thumbs or
six fingers (Billard and Kragic 2019).

All of which prompts the question of whether
we need anthropomorphic robotic hands. Attempt-
ing to answer this question, we analyze the human
hand and its capabilities, including kinematics and
perception, to find characteristic features of anthro-
pomorphic hands. Furthermore, we review com-
mercially available robotic and prosthetic hands to
identify anthropomorphic features that are tech-
nically feasible. Then we perform a systematic
literature review to correlate hand features derived
from the previous two sections, skill categories, and
manipulable degrees of freedom. We conclude with
a discussion that connects our findings to litera-
ture from neuroscience, biology, prosthetics, and
robotics.

Carpus

Metacarpus

Metacarpophalangeal (MCP) joints

Proximal interphalangeal (PIP) joints

Distal interphalangeal (DIP) joints

Proximal phalanges

Intermediate phalanges

Distal phalanges

Trapezo-metacarpal (TMC) joint

- Flexion / extension
- Adduction / abductionMCP joint

- Flexion / extension

Interphalangeal (IP) joint
- Flexion / extension

- Flexion / extension

- Flexion / extension

- Flexion / extension
- Opposition / reposition

Trapezium

First metacarpal bone Carpometacarpal (CMC) joints
- Palmar arch

Radiocarpal joint
- Flexion / extension
- Adduction / abduction

Fig. 1: Kinematics of the human hand (legend in
Figure 7a).

Fig. 2: Bones of the human hand. Image from
Young et al. (2013) CC BY 4.0. Fingers are enu-
merated from thumb (1) to little finger (5).

2 The Human Hand

To answer whether robotic hands need to be more
like human hands, we define the characteristics of
the human hand in terms of biomechanics, sensors,
control, and learning.

2.1 Biomechanics of the Human
Hand

The human hand is one of the most advanced
manipulation devices that can be found in nature
(Kapandji 2007).

2.1.1 Joints and Degrees of Freedom

The human hand has many bones (see Figure 2),
but not all of them are connected through mov-
able joints. The human hand has 20 undeniable

2



degrees of freedom—four in each finger. Index, mid-
dle, ring, and little finger can perform flexion and
extension in three joints (metacarpo-phalangeal
joint, MCP; proximal interphalangeal joint, PIP;
distal interphalangeal joint, DIP) and adduction
(moving closer to the middle finger) and abduc-
tion (moving away from the middle finger) in one
joint (MCP). The thumb is a special case with a
saddle joint (trapezo-metacarpal joint, TMC) that
has two degrees of freedom to achieve flexion/ex-
tension and opposition/reposition, and two more
joints (MCP and interphalangeal joint, IP) to per-
form flexion/extension. It is possible to move the
metacarpal bones and hollow the palm to a limited
extent (Kapandji 2007) so that Cobos et al. (2008)
define hand kinematics with 24 degree of freedom.
Assuming the carpus to be rigid is only an approx-
imation (Kapandji 2007), and the palm, as well
as the skin, are soft and deformable. A kinematic
diagram of the hand is displayed in Figure 1.

2.1.2 Range of Motion

Cobos et al. (2008, Table III) provide a concise
overview of the range of motion for each joint.1

However, the exact range depends on the person.
For example, a human can have distal hyperexten-
sibility of the thumb (hitchhiker’s thumb), which
allows them to extend their thumb’s IP joint by
90 degrees so that its active range of motion is 180
degrees. The Kapandji index (Kapandji 1986) mea-
sures the range of motion of opposition/reposition
in the thumb’s TMC joint to evaluate an indi-
vidual’s dexterity. Furthermore, there is a range
that can be actively reached through muscle con-
traction and it is possible to extend movement in
some joints even further through contact with the
environment. For example, passive extension in
the DIP joints can be about 30 degrees (Kapandji
2007), which is considerably larger than the active
extension of 5 degrees.

2.1.3 Muscles and Tendons

Muscles interact and work together in a complex
way. The force produced by muscles is applied to
bones through tendons. Flexors and extensors, for
instance, work together to not only control the

1Range of flexion seems to be swapped between MCP and
PIP joints (Kapandji 2007).

(a) Muscles in the forearm move the wrist, hand, and
fingers.

(b) Intrinsic muscles of the human hand.

Fig. 3: Muscles of the human hand. ByYoung et al.
(2013), CC BY 4.0.

finger positions but also the force and stiffness of
the hand (Controzzi et al. 2014).

More than 30 intrinsic and extrinsic muscles
move the hand (Kapandji 2007) (see Figures 3 a
and b). They are named according to the type of
movement they perform (flexor, extensor, abduc-
tor, adductor), the bones they connect to, or the
fingers they move. Some have an additional suffix
describing their size (longus, brevis) or position
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(superficialis, profundus). Each Latin name of a
muscle is preceded by the term musculus, which
we omit for brevity.

Wrist (extrinsic muscles, Figure 3a)

Several muscles work together to flex and extend
the wrist joint. Flexor carpi radialis, flexor carpi
ulnaris, and palmaris longus flex the wrist joint.
Extensor carpi ulnaris, extensor carpi radialis
longus, and extensor carpi radialis brevis extend
the wrist joint (Young et al. 2013). However, most
of these muscles also have another function. All
carpi radialis muscles contribute to abduction, and
all carpi ulnaris muscles contribute to adduction
of the wrist. Furthermore, there are extrinsic fin-
ger muscles that contribute to wrist flexion and
extension (Young et al. 2013).

Extrinsic finger muscles, excluding the
thumb (Figure 3a)

The extrinsic flexors and extensors of the fingers
act on multiple joints, including the wrist. Most
notably are

• Flexor digitorum superficialis (FDS): its four
tendons attach to the middle phalanges 2–5
and it flexes the fingers and the wrist.

• Flexor digitorum profundus (FDP): its four
tendons attach to the distal phalanges 2–5,
passing through the tendons of FDS, and it
flexes the fingers and the wrist.

• Extensor digitorum communis (EDC): its four
tendons attach to the distal phalanges 2–5
and it extends the fingers and the wrist.

Furthermore, the extrinsic finger muscles exten-
sor indicis and extensor digiti minimi extend all
joints of only one finger—index and little finger,
respectively—and the wrist.

Intrinsic and extrinsic muscles of the
thumb (Figure 3b)

The thumb is an unusual yet essential finger with
its large range of motion in the TMC joint and
ability to oppose the other fingers. Eight mus-
cles control it. The two degrees of freedom of the
TMC joint are controlled by all intrinsic (opponens
pollicis, abductor pollicis brevis, flexor pollicis bre-
vis, adductor pollicis) and extrinsic (flexor pollicis
longus, extensor pollicis longus, extensor pollicis

brevis, abductor pollicis longus) muscles of the
thumb. The MCP joint is flexed by flexor pollicis
longus and brevis and extended by extensor polli-
cis longus and brevis. The IP joint is only flexed
by flexor pollicis longus and extended by exten-
sor pollicis longus. Abductor pollicis longus also
contributes to wrist abduction, and flexor pollicis
longus to wrist flexion.

Other intrinsic muscles (Figure 3b)

Four dorsal interossei muscles and three palmar
interossei muscles perform abduction and adduc-
tion of fingers 2–5. They also assist the lumbricals,
which are located between tendons of the FDP at
the palm and the back side of the distal phalanges
2–5, in their function. They flex the MCP joints
and extend the PIP and DIP joints, allowing for
individual flexion of the MCP joints.

There are also specific muscles that have a
single function and can be found only in one or
two fingers. Abductor digiti minimi : it abducts
the little finger so that the abduction of the little
finger can be stronger than that of fingers 2–4.
Flexor digiti minimi brevis: flexes the little finger
at the MCP joint. Opponens digiti minimi : brings
the little finger into opposition, much less than
the thumb, though, and also hollows the palm.
Palmaris brevis does not seem to be functionally
relevant, but provides protection to underlying
tissue (Moore and Rice 2017).

2.1.4 Redundancy

Often, multiple muscles work together to perform
one movement. For example, seven muscles con-
tribute to controlling the two degrees of freedom of
the wrist. This, however, does not mean that mus-
cles are redundant and can be removed, as Kutch
and Valero-Cuevas (2011) point out.

2.1.5 Force

Wells and Greig (2001) report maximal power grip
forces of 450 N. Wang et al. (2018) observe up to
662 N for the 90th percentile of 25–29 year old
men in their dominant hand.

2.1.6 Coupling

It is not possible to completely isolate movements
of each degree of freedom. Flexion of one finger
causes nearby fingers to move as well (enslaving
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force phenomenon (Slobounov et al. 2002)). The
effect increases with the force applied to the main
finger. Mechanical coupling between tendons and
muscle compartments, multi-digit motor units that
co-activate, and overlapping representations in the
brain are possible causes. For example, FDP flexes
all three finger joints (Appell and Stang-Voss 2008).

Another example of coupling is abduction of
the index finger, which is facilitated by the dor-
sal interossei muscle, thereby pulling the thumb
closer to the index finger. This movement of the
thumb must be compensated for by other muscles,
resulting in small movements. However, Ingram
et al. (2008) show that the thumb is the finger
that moves most independently. An independently
movable and opposable thumb is essential for the
prehensile function of the hand.

2.1.7 Variations

The exact dimensions and the range of motion vary
from person to person. Even the number of fingers
can be different, as some people might have six
fingers (Mehring et al. 2019).

2.1.8 Soft cover (muscles and skin)

An often-neglected aspect in robotics is the soft and
deformable cover of the human hand, consisting
mainly of its intrinsic muscles on the palm side
and the skin. By contracting muscles located in
the palm or flexing the fingers, the surface can also
be deliberately changed.

2.2 Sensors of the Human Hand and
Perception

2.2.1 Biomechanical aspects of haptic
perception

Haptic perception is often linked to the sense
of touch, mediated primarily by skin receptors
that fall into three categories based on their func-
tion: mechanoreceptors for pressure and vibration,
thermoceptors for temperature changes, and noci-
ceptors for pain (Purves et al. 2012, Chap. 9).
These receptors allow us to perceive size, shape,
texture, and temperature, which are crucial for
object manipulation (Dahiya et al. 2010).

Proprioception, or the sense of self-movement
and body position, is integral to haptic perception.
This sense originates from receptors in muscles,

Fig. 4: Primary mechanoreceptors in the human
skin. Merkel’s cells respond to light touch, Meiss-
ner’s corpuscles respond to touch and low-
frequency vibrations. Rufinni endings respond to
deformations and warmth. Pacinian corpuscles
respond to transient pressure and high-frequency
vibrations. Krause end bulbs respond to cold.
Image from Clark et al. (2020) CC BY 4.0.

joints, and tendons (Lederman and Klatzky 2009;
Dahiya and Valle 2013), playing a key role in per-
ceiving object properties like shape through the
alignment of bones and muscle stretching (Navarro-
Guerrero et al. 2023). Proprioceptive receptors in
muscles, skin, and joint capsules (Tabot 2013) are
crucially connected with motor control (Taylor
2013).

Muscle spindles sense changes in muscle length,
while Golgi tendon organs (GTOs) measure muscle-
applied force (Tabot 2013), contributing to detailed
representations of hand and limb positions. Joint
capsule receptors measure extreme positions of the
joints to prevent overextension (Tabot 2013). The
proprioceptive signals are highly interconnected
with motor control (Taylor 2013) and have a fast
conduction velocity of 80–120 m/s (Siegel and
Sapru 2006). These proprioceptive signals, interact-
ing with tactile feedback, convey information about
the state of hand, wrist, and forearm muscles.

The classification of mechanoreceptors in the
human hand includes four primary types, each
with distinct characteristics (Dahiya et al. 2010).
Pacinian corpuscles (FA II) are fast-adapting recep-
tors that detect high-frequency vibrations, which
are important for tool use, with a typical stimulus
frequency range of 40–500+ Hz. Ruffini corpuscles
(SA II) adapt slowly and respond to skin stretch,
providing feedback on finger position, stable grasp,
and tangential forces, with effective stimuli fre-
quencies around 100–500+ Hz. Merkel cells (SA
I), also known as slow-adapting, have high spatial
acuity (approximately 0.5 mm) and are crucial for
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texture perception and form detection, respond-
ing to low-frequency stimuli between 0.4 and 3 Hz.
Meissner’s corpuscles (FA I) are fast-adapting, sen-
sitive to low-frequency vibrations (3–40 Hz), and
are involved in motion detection and grip control,
with spatial acuity ranging from 3 to 4 mm. All
mechanoreceptors exhibit similar conduction veloc-
ities of approximately 35–70 m/s, facilitating the
rapid relay of tactile information essential for fine
motor tasks. They contribute to detecting fingertip
forces, vibrations, and tangential loads (Liu et al.
2020).

Cutaneous nerve fibers on the dorsal hand sur-
face react to skin stretch during joint movements
and convey joint angle information (Lutz and Bens-
maia 2021). Stimulating the skin on the dorsal
surface can induce illusions of movement. However,
this effect has only been tested where a single joint
was deflected (Lutz and Bensmaia 2021).

The brain devotes a significant portion of the
somatosensory cortex to the hand, reflecting its
behavioral importance. About 20% of the surface
in Brodmann’s areas (Lutz and Bensmaia 2021)
are allocated to hand representations.

2.2.2 Skills enabled by haptic
perception

Haptic perception enables humans to explore
objects using strategies known as exploratory pro-
cedures (EPs) (Lederman and Klatzky 1987, 2009).
These EPs are categorized based on their focus: the
substance of an object (texture, hardness, temper-
ature, weight), structural properties (global shape,
volume, weight), and function discovery (movable
parts, potential functionality). For instance, the
lateral motion EP moves skin over an object’s sur-
face to assess texture, while the pressure EP tests
hardness through poking or tapping. Static contact
EP assesses temperature briefly through passive
touch. Other EPs include unsupported holding for
weight inference, enclosing for global shape, con-
tour following for detail, and part motion testing
and function testing for understanding movement
and function. Figure 5 shows examples of the
exploratory procedures for the first two categories.

Proprioception, which is the perception of self-
movement and body position, plays a crucial role
in daily activities and fine motor skills (Lutz and
Bensmaia 2021). Lack of proprioception can lead

Fig. 5: Illustration of six exploratory procedures
(Lederman and Klatzky 2009). From left to right
and top to bottom: Contour Following, Pressure,
Enclosure, Unsupported Holding, Static Contact,
and Lateral Motion. Adapted from Nelinger et al.
(2015) CC BY 3.0.

to unstable reach trajectories, impaired postu-
ral stability, and poor hand coordination, even
when visual feedback is available (Lederman and
Klatzky 2009). Stereognosis, the haptic perception
of three-dimensional shapes, requires integrating
proprioceptive with cutaneous signals (Lutz and
Bensmaia 2021). Proprioceptive signals describe
hand conformation during grasp, while tactile sig-
nals deliver contact location and geometric features
such as edges and corners at each contact point
(Lutz and Bensmaia 2021). This integration ensures
effective object perception and showcases how mul-
timodal signals encode object identity even before
contact occurs (Lutz and Bensmaia 2021).

2.2.3 Role in Grasping

Tactile information is crucial for reaching and
grasping, with cutaneous receptors playing a vital
role in controlling prehensile force during object
manipulation (Dahiya et al. 2010). These receptors
help determine the shear or load force, enabling
optimal adjustment of grip force (Dahiya et al.
2010). Tactile feedback provides information about
the system’s state; without it, internal models that
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guide anticipatory control mechanisms become out-
dated, complicating tasks like grasping (Dahiya
et al. 2010). Specific tactile afferent responses
characterize the distinct phases of a grasping
action—such as reaching, loading, lifting, and
holding—marking transitions between these phases
and centering the planning and control of manipu-
lation in the brain on mechanical events (Dahiya
et al. 2010).

Effective grasping demands fine control over fin-
ger muscle strength and precise timing throughout
various phases of grasp. A lack of tactile sensing
can prolong the duration of the finger opening
phase, impairing grasp control and coordination
(Dahiya et al. 2010). Tactile cues at the beginning
and end of movements enable the optimization of
grasp temporal parameters, facilitating an under-
standing the timing of sequential actions, such as
playing an instrument or executing synchronized
movements (Dahiya et al. 2010).

While tactile senses are pivotal, the human sen-
sory system is inherently multimodal, integrating
touch, vision, and auditory feedback to construct
a comprehensive internal representation known as
the “body schema” (Dahiya et al. 2010). This inte-
gration increases the reliability of sensory estimates
and enhances robustness (Dahiya et al. 2010). In
grasping, a precise measure of contact forces is
essential for force control and maintaining stable
grasps (Dahiya et al. 2010).

In addition to understanding the magnitude
of forces, the direction is critical for dexterous
manipulation, as it regulates the balance between
normal and tangential forces to ensure grasp sta-
bility, known as the “friction cone” (Dahiya et al.
2010). Shear forces provide crucial insights into
shape, surface texture, and slip, forming a sig-
nificant part of the tactile information required
for interacting with objects and discerning mate-
rial properties such as hardness and temperature
(Dahiya et al. 2010).

2.3 Theories of Human Motor
Control and Learning

We can place human motor functions on a spec-
trum from involuntary to voluntary. The most
involuntary motor functions are reflexes, which
have a direct neural connection between stimulus
and response. Additionally, more complex, auto-
mated movements, such as locomotion patterns,

are involuntary. Voluntary movements include con-
sciously controlled movements such as grasping,
writing, and speaking. In the hierarchy of move-
ments, speaking might be a voluntary act, but
forming individual vowels is a highly automated,
less voluntary process. Several theories explain var-
ious aspects of human movements, control, and
motor learning.

2.3.1 Central Nervous System (CNS)

We summarize the role of the CNS for motor
control based on Brandes et al. (2019).

Motor cortex

The motor cortex produces higher motor func-
tions and contains cortical columns that represent
individual movements, involving the coordination
of multiple muscles. The primary motor cortex
executes voluntary movements, controls muscles
directly, and efferent nerve fibers connect it to, e.g.,
the basal ganglia, secondary motor areas, thalamus,
cerebellum, and the spinal cord. Some pyramidal
cells of the primary motor cortex connect monosy-
naptically to the muscles of the hand to perform
a precision grasp, which humans develop during
the first year of their life. The premotor cortex
initiates and plans movements that are sensomo-
torically triggered and guided. The supplementary
motor area is responsible for planning self-initiated
movements and coordinating voluntary movement
with other actions.

Cerebellum

The cerebellum coordinates, optimizes, and cor-
rects movements. It compares desired effects with
sensor feedback and learns from errors. Specifi-
cally, the spinocerebellum moves distal muscles
(e.g., for grasping) and receives afferences from the
spinal cord for fast control of trajectories based
on comparison between desired movements with
anticipated sensor measurements and actual mea-
surements. This process happens mainly for new,
non-repetitive movements. The pontocerebellum
plans and controls temporally or spatially com-
plex movements, e.g., coordinates the simultaneous
movement of fingers. It stores motor programs,
which are complex, automated movements that
have been learned and do not use sensor feed-
back. The pontocerebellum is primarily involved
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in complex and fast movements, e.g., playing the
piano.

Basal ganglia

The basal ganglia support flexible control of higher
motor functions. They execute or suppress learned
movements based on context (situation-movement
associations), select from several possible move-
ments, are responsible for temporal coordination,
and learn from rewards.

2.3.2 Motor Program Theory

Motor program theory explains learning, represen-
tation, and execution of fast, open-loop motor skills
that are realized in the pontocerebellum. It is based
on the observations that reaction time increases
with complexity of movements (Polit and Bizzi
1979), animals that are deprived of sensory infor-
mation using a surgical process of deafferentation
still produce effective movements (Polit and Bizzi
1979), and muscular activity patterns during the
first ca. 100 ms of limb movement remain the same
even when a person’s limb is unexpectedly pre-
vented from moving (Wadman et al. 1979). Schmidt
(1975); Schmidt and Lee (2014) proposed gener-
alized motor programs (GMPs) and the schema
theory for learning fast, open-loop motor skills.
GMPs are representations of complex, coordinated,
and rapid movements that are learned and allow
modification along several dimensions, such as
movement time, movement amplitude, and the
effector system used to produce the action, thereby
preserving the temporal pattern of the movement.
Schema theory extends GMPs. It suggests that
tuples of situation / context parameters, GMP
parameters, extrinsic feedback (result of move-
ment), and internal feedback (sensor information)
are used to form schemas. When encountering a sit-
uation, an appropriate GMP and parameterization
are selected to achieve the desired result.

2.3.3 Dynamical Systems Theory

Another theory is needed to explain closed-loop,
sensorimotor control. An interesting observation is
that humans have many degrees of freedom, e.g., in
their hands and arms, that need to be coordinated,
many more degrees of freedom than are necessary
to solve specific tasks. Bernshtein (1967) found
that humans reliably reach high-level goals despite

high variability in their movements. A related phe-
nomenon is the so-called uncontrolled manifold
(Scholz and Schöner 1999), which states that sev-
eral degrees of freedom are actively controlled and
stable. In contrast, others are not controlled and
show high variability. Dynamical systems theories
(Sternad 2000) explain these observations through
concepts such as muscle synergies and coordina-
tive structures that result in attractor states or
dynamic stability with many redundant degrees
of freedom (Scott Kelso and Tuller 1984; Glazier
et al. 2003). The concept of synergies has been
applied to hand control by Mason et al. (2001),
who demonstrate that reach-to-grasp motions can
be produced with a base posture with refinements
of finger positions. The first three dimensions of
a singular value decomposition account for 99.5%
of the variance of all observed grasps. Hence, it is
assumed that actively controlled degrees of free-
dom are considerably lower than the actual number
of degrees of freedom of the hand. Santello and
Soechting (2000) apply the concept to forces. Syn-
ergies describe the outcome, but their origin needs
an additional explanation.

2.3.4 Stochastic Optimal Feedback
Control

Todorov and Jordan (2002); Todorov (2004) pro-
pose stochastic optimal feedback control to com-
bine performance guarantees inherent in optimiza-
tion models with behavioral richness emerging from
dynamical systems. Todorov and Jordan (2002)
argue that planning and execution are not sepa-
rated. This framework explains task-constrained
variability, goal-directed corrections, motor syner-
gies, and controlled parameters, simplifying rules
and discrete coordination modes into a unifying
theory of sensorimotor skills.

2.3.5 Bayesian Decision Theory and
Predictive Motor Control

Humans exhibit behavior similar to Bayesian pro-
cesses in motor control, perception integration,
and cue combination (Körding and Wolpert 2006),
which enables them to handle noise in the environ-
ment, perception, and their movements (Faisal et al.
2008). Combining prior knowledge with sensory
feedback provides more certainty than sensory feed-
back alone (Franklin and Wolpert 2011). Bayesian
decision theory extends this to motor control. It
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is a probabilistic framework that models action
selection as a way to maximize the expected util-
ity of an outcome, where the utility quantifies the
overall desirability of the outcome of a movement
decision. Humans constantly predict expected sen-
sor measurements (Wolpert and Ghahramani 2000;
Wolpert and Flanagan 2001; Kawato 1999) and
compare them to actual measurements, e.g., in the
spinocerebellum. This theory is compatible with
optimal feedback control (Todorov and Jordan
2002; Todorov 2004).

2.3.6 Sensorimotor Learning

Wolpert et al. (2011) distinguish various processes
of motor learning: (1) error-based learning that
uses a gradient with respect to each component of
the motor command to adapt motor commands
(e.g., grip force) quickly, (2) reinforcement learn-
ing for complex sequences of actions that need to
take place to achieve a goal and the outcome is far
removed from the action, and (3) use-dependent
learning that changes the behavior, even if no out-
come information is available. In addition, humans
can learn high-level information about which move-
ments to make in sequence and how to compensate
for perturbations from observing others.

2.4 Summary: Defining
Characteristics of the Human
Hand

2.4.1 Biomechanics

The human hand has five fingers, an opposable
thumb, a high number of about 24 degrees of free-
dom, including abduction/adduction and three
flexion/extension joints per finger, of which most of
them are almost individually controllable, an exten-
sive active and even larger passive range of motion,
a soft and deformable surface, particularly at the
large surface of the flexible palm, and the ability
to produce high grip forces. Individual control of
each degree of freedom is not perfect for several
reasons: muscles that move multiple joints, cou-
pling and friction between tendons, co-activation
of motor units, and representation in the brain.
For instance, strong forearm muscles flex multiple
fingers and joints per finger simultaneously to gen-
erate a firm power grasp. Flexion of just one joint
requires coordination of multiple muscles.

2.4.2 Perception

The human hand robustly integrates tactile and
proprioceptive signals across skin, muscle, and
joint receptors. This integration enables the per-
ception of detailed object properties and nuanced
positional feedback, forming a sophisticated multi-
modal sensory system. Such complexity in percep-
tion is a key inspiration for developing advanced
robotic hands that mimic human dexterity and
precision.

2.4.3 Control and Learning

Different mechanisms seem to be responsible for
controlling and acquiring fast, complex, repeti-
tive skills without sensor input, versus new or
perception-based skills that require constant con-
trol. Often, human control aims at optimality and
does not explicitly encode which limb or mus-
cle is used. Humans integrate sensor data from
various high-dimensional sources (visual, tactile,
kinesthetic) and easily coordinate many degrees
of freedom. They can handle sensor and actuator
noise in a Bayesian-like way and anticipate sensory
feedback. However, the most important feature of
human control is its adaptability through learn-
ing and continuous improvement with additional
experience.

3 Robotic Hands

Given the open question of whether anthropo-
morphic hands are genuinely needed, we take a
closer look at existing robotic hands and sen-
sors in both research and commercial contexts.
Broadly, these can be divided into two categories:
robotic hands developed by companies and research
institutions for versatile manipulation tasks, and
prosthetic hands designed to replace lost or missing
human limbs. While the former focuses on enabling
machines to interact flexibly with their environ-
ment, the latter are tailored to specific user needs
and medical contexts.

In this section, we provide a detailed analy-
sis of the most widely known and used robotic
hands across industrial, research, and prosthetic
domains. We focus on their design choices, sensory
capabilities, and key features. A more comprehen-
sive overview is provided in the supplementary
material.
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3.1 Mechanics

Robotic hands are designed in various ways depend-
ing on their intended use. Controzzi et al. (2014)
suggest considering six aspects when designing a
robotic hand: (1) hand kinematics, (2) actuation
principle, (3) actuation transmission, (4) sensors,
(5) materials, and (6) manufacturing method.

The required DoFs and the number of actua-
tors determine the hand’s kinematics (Controzzi
et al. 2014). The mechanical fingers/grippers are
mainly composed of different joints connected in a
serial manner, allowing them to perform a specific
task. In order to be able to control n DoFs, we need
m = n + 1 independent actuation tendons (Con-
trozzi et al. 2014). Such kinematic architecture
is used in the BarrettHand2. Nevertheless, hands
with actuation tendons that exceed n+1 are more
versatile and dexterous. These kinematic archi-
tectures are called redundant and are used, for
example, in The Shadow Dexterous Hand3.

Regardless of the advantages of using redundant
transmission, it is also possible to design hands
with underactuation (m < n) and coupled trans-
mission. Such a design is inspired by the human
hand, as shown in Section 2.1.

Controzzi et al. (2014) provides six possible
kinematic architectures in robotic hands, depicted
in Figure 6.

The Shadow Dexterous Hand is one of the most
advanced robotic hands and is produced by Shadow
Robot. It has five fingers and 24 DoFs, of which 20
are controllable. In addition, similar to the human
hand, it is possible to perform opposition and
reposition of the thumb, flexion, extension, adduc-
tion, and abduction of all fingers. Such movements
enable a dexterous hand that can perform various
complex manipulation tasks.

Figure 7c represents the kinematic architecture
of the Shadow Dexterous Hand using the kinematic
notations derived from Wang et al. (2008) and
depicted in Figure 7a.

A less complex robotic hand is the BarrettHand.
It has three fingers and eight DoFs, although only
four of these are independently actuated using four
motors. All fingers support flexion and extension
movements. Opposition and reposition are possible

2https://advanced.barrett.com/barretthand
3https://www.shadowrobot.com

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Representation of possible robotic hand
kinematic architectures, adapted from Controzzi
et al. (2014). M denotes the number of actuated
tendons (red circles), and N the number of bidi-
rectional DoFs (black circles). Diagrams show: (a)
M = N coupled joints; (b) M < N underactu-
ated transmission; (c) M = N fully actuated open
chain; (d) M = N fully actuated closed chain;
(e) M = N + 1 fully controllable; (f) M = 2N
agonist/antagonist transmission (Controzzi et al.
2014). Continuous lines indicate tendons, dashed
lines joints, and zigzag lines springs.

with two fingers. The kinematic architecture of the
BarettHand is depicted in Figure 7b.

Apart from the chosen kinematic architec-
ture, the transmission actuator mechanism and
kind do impact the performance of the robotic
hand. For instance, actuators used in the arti-
ficial hand can be electrical (e.g., DC motors),
pneumatic, or hydraulic. Natural muscles have
a power density (ρ) of approximately 500W/Kg.
Such power density can be achieved by hydraulic or
pneumatic actuators (respectively, 2000W/Kg and
400W/Kg) (Huber et al. 1997). Such solutions are
already used in artificial robotic hands (e.g., GRIP-
KIT Industrial (P PRO)4, EHA hand (Ko et al.
2017)). However, such solutions are usually bulky
or hard to maintain. DC motors (electrical actua-
tors), on the other hand, can reach a power density
ρ = 100W/Kg (Huber et al. 1997). While these

4https://weiss-robotics.com/gripkit-for-cobots/
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Link

1 DOF: flexion/extension

1 DOF: see description

2 DOF: flexion/extension + another DOF

Coupling between joints

(a) Legend for kinematic diagrams.

(b) BarrettHand. (c) Shadow Dexterous Hand.

Fig. 7: Kinematic diagrams. Notation based on
(Wang et al. 2008).

actuation mechanisms may have a lower power-
to-weight ratio compared to others, they remain
popular actuators thanks to their compact size and
cost-effective maintenance (Controzzi et al. 2014).

In order to accurately control joints, transmis-
sion is crucial. Such systems enable converting
the power provided by the actuators to a specific
hand/finger movement. An ideal transmission sys-
tem would have low inertia, friction and backlash,
and would be overall compact and small (i.e., in
terms of size and weight). Several transmission
types can be deployed: including tendons, gear
trains, belts, linkages or flexible shafts (Controzzi
et al. 2014). In the human hand, we found tendons
that connect muscles to bones (Tanrıkulu et al.
2015). Such tendons run in a sheath. A similar sys-
tem is commonly found in artificial robotic hands,
as such a design allows for reduced friction and
remote control of the fingers (e.g., Shadow dexter-
ous hand). For further transmission comparison,
we refer to the work of Controzzi et al. (2014).

We reviewed various robotic hands used in
industry, research, and also as prosthetic hands. To

provide readers and practitioners with a straight-
forward overview of the commonly used hand,
we first categorize these into two groups: robotic
hands and prosthetic hands. This splitting is
based on the primary application for which the
manufacturer/researcher intended the hand to be
designed.

We focus on six different features: DoF, num-
ber of actuators, number of fingers, possibility of
flexion (and extension), adduction (and abduc-
tion), and opposition (and reposition). Specifically,
DoF and the number of actuators influence the
hand’s dexterity and versatility, while the number
of fingers and their movement capabilities affect its
grasping and manipulation abilities. For a detailed
description of each robotic hand, please refer to
the supplementary material. The characteristics
of robotic and prosthetic hands are visualized in
Figure 8.

3.2 Perception

To perform dexterous manipulation, a robot must
understand what the object being manipulated is
and what type of operation is required, i.e., task
requirements (Xia et al. 2022).

Tactile sensors are primarily designed to
mimic mechanoreceptors, particularly for detect-
ing mechanical pressure. The main objectives of
tactile sensors are to determine the location, shape,
and intensity of contacts. These properties are
determined by measuring the instantaneous pres-
sure or force applied to the sensor’s surface on
multiple contact points. Also, the contact’s late
effects, i.e., body-borne vibrations, may carry rele-
vant information. Body-borne vibrations are not
as commonly measured or exploited as part of
haptic sensing; however, there are some examples
and it is becoming an active area of research (e.g.,
Juiña Quilachamı́n and Navarro-Guerrero 2023;
Bonner et al. 2021; Toprak et al. 2018), including
sensors that are inspired by the hair follicle recep-
tors or ciliary structure (Alfadhel and Kosel 2015;
Kamat et al. 2019) and that have been proven effec-
tive in obtaining information about the texture of
objects (Ribeiro et al. 2020b,a).

Thermoceptors, although an integral part of
human haptic perception, are typically not classi-
fied as tactile sensors within robotic applications.
However, they are sometimes included because they
might help compensate for thermal effects (Tomo
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Robotiq 2F-85/2F-140/Hand-E
Robotiq 3-finger adaptive robot gripper
RH-P12-RN
GRIPKIT (EASY/ PLUS/ PRO/ E PRO/ P PRO)
GRIPKIT Industrial (PZ PRO)
BarrettHand
SVH

RH8D
Allegro Hand
Shadow dextrous hand
Shadow dextrous hand lite
Shadow dextrous hand extra lite
Shadow dextrous hand super lite
IH2 Azzurra

(a) Radar diagram of some selected robotic hands. The
same color is used for hands developed by the same
manufacturer.
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(b) Radar diagram of some selected prosthetic hands.

Fig. 8: Radar diagrams of prosthetic and robotic
hands. Figure A1 provides a similar diagram for
manipulation skills.

et al. 2016a), thus helping to obtain a more robust
electronic signal related to pressure or vibrations,
or because they might help to classify the material
of the object in contact (Wade et al. 2017). In con-
trast, nociceptors have not yet been developed as
part of haptic or tactile sensing per se, but can be
and have been implemented in software based on
the limitations of robots (Navarro-Guerrero et al.
2017b,a).

Overall, artificial tactile sensors are much less
established than artificial visual receptors, e.g.,
RGB(-D) cameras, and event-based cameras. Tech-
nologies for tactile sensing have been developed
since the early 1970s and have undergone signif-
icant improvements in the past decade (Dahiya
et al. 2010; Dahiya and Valle 2013; Kappassov
et al. 2015). However, the field remains young, and
there are no widely accepted solutions. Several
transduction methods have been explored, includ-
ing capacitive (Larson et al. 2016), piezoelectric
(Seminara et al. 2013), piezoresistive (Jung et al.
2015), optical (Ward-Cherrier et al. 2018; Kup-
puswamy et al. 2020), fiber optics (Polygerinos et al.
2010), and magnetic (Jamone et al. 2015). Table 1
summarizes the advantages and disadvantages of
the different transduction principles for detecting
mechanical pressure. For additional information,
please refer to Chi et al. (2018).

Current prosthetic hands such as the Bebionic
and i-Limb hands, have five individually actuated
digits, yet only one grasp function can be con-
trolled at a time. Most people commonly use their
natural hands to manipulate, grasp, or transport
different objects simultaneously. For example, send-
ing commands to multiple fingers while typing on
a keyboard, holding a remote control while press-
ing its buttons, opening a door while holding a
bag, or braiding a child’s hair. Such functionalities
remain elusive for prosthetic hand users, despite
artificial hands being mechanically capable of such
feats. Enabling refined, dexterous control is a com-
plex problem. It continues to be an active area
of research because it necessitates not only the
interpretation of human grasp control intentions,
but also complementary haptic feedback of tactile
sensations (Abd et al. 2022).

More research on the impact that multiple
channels of haptic feedback have on the ability to
multitask with an artificial hand will be an impor-
tant question to answer so that limb-absent people
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Table 1: Transduction mechanisms for detecting mechanical pressure. Tactile sensor design is benefiting
from advancements in nanomaterial and nanocomposite fabrication technology. This table is based on Chi
et al. (2018).

Transduction Mechanisms Advantages Disadvantages

Capacitive: based on the capacitance of par-
allel plates separated by an elastic dielectric
layer. For example: Larson et al. (2016)

• High spatial resolution
• High sensitivity
• Large dynamic range
• Temperature independent

• Stray capacitance
• Complex measurement circuit
• Cross-talk between elements
• Susceptible to noise
• Hysteresis

Piezoresistive: based on the transduction of
forces into resistance changes. For example:
Jung et al. (2015)

• High spatial resolution
• Low cost
• Simple construction
• Compatible with VLSI

• Hysteresis
• High power consumption
• Lack of reproducibility

Piezoelectric: based on the transduction of
forces into voltage changes. For example:
Seminara et al. (2013)

• High sensitivity
• High dynamic range
• High frequency response
• High accuracy

• Poor spatial resolution
• Charge leakages
• Dynamic sensing only
• Temperature-dependent sensitivity and robustness

Optical: based on changes of light intensity
modulation, interferometry or fiber Bragg
grating. For example: Kuppuswamy et al.
(2020); Ward-Cherrier et al. (2018)

• High spatial resolution
• Good reliability
• Wide sensing range
• High repeatability

• Non-conformable
• Bulky in size
• Susceptible to temperature or misalignment

Magnetic: based on changes in the mag-
netic flux/field or electromagnetic induction
caused by mechanical deformations. For
example: Jamone et al. (2015)

• High sensitivity
• High dynamic range
• Linear output
• High power output

• Low frequency response
• Poor reliability
• More power consumption

can exploit the full dexterity of prosthetic limbs
(Abd et al. 2022).

3.2.1 Commercial Sensors

Although there are some commercial solutions, the
costs are still relatively high, and the performance
level is not always satisfactory. In the rest of this
section, we present some of the commercial solu-
tions for tactile sensing. Although we are aware
of other commercial sensors such as the WTS-
FT by Weiss Robotics GmbH & Co. KG. and
BioTac® by SynTouch®, here we only present
those that are undoubtedly still being produced
and commercialized at the time of writing.

Seed Robotics’ FTS Tactile pressure sensors
(see Figure 9) are low-cost sensors with high-
resolution contact force measurement capabilities
(1mN to 30N range). The sensor compensates for
temperature and is immune to magnetic interfer-
ence.

The uSkin sensor (Tomo et al. 2016b) by Xela
Robotics is a magnetic tactile sensor composed of
small magnets embedded in a thin layer of flexi-
ble rubber and placed above a matrix of magnetic
Hall-effect sensor chips. Upon contact, the magnets
are displaced, and the magnetic field sensed by the
Hall-effect chips changes; the contact forces can be

Fig. 9: Left: the SINGLEX stand-alone tactile
pressure sensor version. Right: FTS tactile pressure
sensor mounted on a robot finger. Images used
with permission from Seed Robotics (https://www.
seedrobotics.com/).

estimated from these variations in the magnetic
field. The uSkin sensor can measure the full 3D
force vector (i.e., both normal and shear contact
forces) at each tactel, with a good spatial resolution
(about 1.6 tactels for square cm), high sensitiv-
ity (minimum detectable force of 1gf), and high
frequency (> 100Hz, depending on the configura-
tion). Different versions of the sensor are available
to cover both flat and multi-curved surfaces, see
Figure 10 for an example.
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Fig. 10: Left: a flat version inspired by Tomo et al.
(2018a). Right: a multi-curved version inspired by
Tomo et al. (2018b). Images with permission from
Xela Robotics (https://xelarobotics.com/).

Fig. 11: Left: Single 3D force tactile sensor.
Right: A slim tactile sensor array (PapillArray Sen-
sor) available in different configurations. Images
from Contactile (https://contactile.com/), licensed
under CC BY-NC-ND 4.0.

The GelSight Mini (Yuan et al. 2017) and
DIGIT (Lambeta et al. 2020) tactile sensors by
GelSight are optical tactile sensors that utilize a
piece of elastomeric gel with a reflective membrane
coating on top, enabling them to capture fine geo-
metrical textures as deformations in the gel. A
series of LEDs with RGB colour illuminates the
gel, allowing a camera to record the deformation.

Finally, Contactile offers both a stand-alone
sensor and tactile sensor arrays, called PapillAr-
ray sensors, as shown in Figure 11. These optical
sensors consist of infrared LEDs, a diffuser, and
four photodiodes encapsulated in a soft silicone
membrane. The photodiodes are used to measure
the light intensity patterns, which are then used
to infer the displacement and force applied to the
membrane. This strategy enables the measurement
of 3D deflections, 3D forces, and 3D vibrations, as
well as the inference of emergent properties such
as torque, incipient slip, and friction.

The need for such technologies is driving
research forward in both the development of
new sensing technologies and applications such
as robotic grasping, smart prostheses, and surgi-
cal robots. In particular, enhancements are still

needed in the mechanical robustness, sensitivity,
and reliability of the measurements, as well as the
ease of electromechanical integration and replace-
ment, to deploy sensors in practical applications.
Of particular interest are solutions that: are flexi-
ble (Larson et al. 2016; Senthil Kumar et al. 2019),
stretchable (Büscher et al. 2015) and can cover
sizeable (Dahiya et al. 2013) and curved (Tomo
et al. 2018b) surfaces (possibly with a small num-
ber of electrical connections (Juiña Quilachamı́n
and Navarro-Guerrero 2023)), can detect multi-
ple contacts at the same time (Hellebrekers et al.
2020), can detect both normal and shear forces
(Tomo et al. 2018a), are affordable and can be eas-
ily manufactured (Paulino et al. 2017). For more
information on experimental tactile sensing tech-
nologies, see Chi et al. (2018), and for a specialized
review of printable, flexible, and stretchable tactile
sensors, see Senthil Kumar et al. (2019).

3.2.2 Tactile Servoing

The dexterous robotic hand can achieve more
accurate adjustments through the combination of
real-time tactile feedback and the control system.
The sense of touch is no longer simply “telling”
the robot about contact information and object
information. Robot hands use tactile information
to make judgments about fingers and control the
object’s state to reach the target state. In control-
level perception, related research topics include
tactile servoing, slip detection, and grasp quality
measures (Xia et al. 2022).

Tactile servoing

In the process of dexterous manipulation, the
tactile servo can be assigned in the control archi-
tecture, where the motor is driven by tactile
feedback. Meanwhile, tactile servoing also gives
the robotic hand a new direction for exploring new
environments more safely (Xia et al. 2022).

Slip detection

Dexterous manipulation with a multi-fingered
robotic hand is a challenging task due to the exis-
tence of uncertainties arising from sensor noise,
slippage, or external disturbances. External distur-
bances caused by environmental changes may cause
a planned-to-be stable grasp to become unstable.
Humans can react quickly to instabilities through
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tactile sensing. The ability to detect slips in tac-
tile perception is critically essential for further
dexterous manipulations (Xia et al. 2022).

Grasp quality measure

The correct grasp of objects is critically important
for dexterous manipulation. Planning a good grasp
involves determining grasping points on the object
surface and selecting suitable hand configurations.
Given an object and a hand, the key step in grasp-
ing planning is to measure the grasp quality (Xia
et al. 2022).

3.3 Robot Control

Numerous approaches have been used to gener-
ate motor skills for robots. A list that is most
likely not complete: motion and grasp planning,
optimal control, model-predictive control, reinforce-
ment learning (model-free / model-based), inverse
reinforcement learning, offline reinforcement learn-
ing, imitation learning (e.g., through teleopera-
tion, kinesthetic teaching, and retargeting), and
evolutionary algorithms. Robotics research and
neuroscience have a significant overlap as demon-
strated, for example, by Sternad (2000) or Todorov
(2004). Theories that explain human behavior often
yield practically useful concepts for movement
generation in robotics.

3.3.1 Planning

Motion planning (Kavraki and LaValle 2008) and
grasp planning, utilizing tools such as GraspIt!
(Miller and Allen 2004) and grasp quality measures
(Roa and Suárez 2015), are traditional approaches
for generating robot motion. However, they often
assume a noise-free, controlled environment, and
it is challenging to define arbitrary manipulation
tasks beyond grasping or pick-and-place.

3.3.2 Dynamical Movement Primitives

An approach to robot control that combines
aspects of generalized motor programs and schema
theory on the one hand and dynamical systems
theory on the other is dynamical movement primi-
tives (DMPs, (Saveriano et al. 2023)). DMPs define
stable dynamical systems to generate motor com-
mands, and can be learned from demonstration and
through reinforcement learning. Similar to the con-
cept of schema theory, regression techniques can

be used to parameterize DMPs based on context
or task parameters.

3.3.3 Stochastic Optimal Feedback
Control, Optimal Control,
Model-Predictive Control, and
Reinforcement Learning

In contrast to neuroscience, the field of robot
control distinguishes optimal control and model-
predictive control from model-free and model-
based reinforcement learning (RL). In optimal
control and model-predictive control, the models
are explicitly defined, while they are learned or not
explicit in RL. As a result, developed algorithms
often differ.

Optimal control has been implemented in
robotic systems to generate movements in various
forms. Mordatch et al. (2012) generate complex
manipulation actions for various hands through
optimization with an a priori defined model of
the system and environment. However, a similar
approach can be used continuously online with a
high frequency, which is known as model-predictive
control, to generate complex movements as shown
by Tassa et al. (2012) in the context of locomotion.
This approach is robust to model errors.

In model-based RL, dynamics models and
reward models are learned from experience. Naga-
bandi et al. (2020) demonstrate how to use a
model for online optimization of actions in var-
ious manipulation tasks, e.g., in-hand manipula-
tion. Model-free RL solves the problem without
explicitly learning the dynamics model. The most
successful approaches for continuous control (e.g.,
OpenAI et al. 2019; Zakka et al. 2023) are based on
the actor-critic framework, which directly learns a
policy that maps observations to actions, eliminat-
ing the need for online optimization. RL can solve
complex tasks, such as playing piano (Zakka et al.
2023).

Although these approaches are promising and
attempt to mimic human motor control, in prac-
tice, they often fail to integrate complex sensory
data. They could, but even though camera images
are sometimes used directly as input, they are often
avoided (e.g., Nagabandi et al. 2020) or enriched
with additional position information (e.g., OpenAI
et al. 2019). In comparison to human motor control,
we often overlook the integration of additional sen-
sors, such as tactile sensors. In addition, learning
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and adaptation of behavior typically do not occur
online, even with machine learning approaches,
after the initial training stage is completed.

3.3.4 Vision-Language-Action Models

Motivated by the success of large pretrained vision
and language models, vision-language-action mod-
els (e.g., RT-2 (Zitkovich et al. 2023)) trained
on teleoperation data are a novel imitation learn-
ing approach for visuo-motor skills. Although this
learning paradigm is still in its early stage of
research, it appears promising, as integrating other
sensor modalities seems possible.

3.4 Summary

3.4.1 Mechanics

From a mechanical perspective, the most advanced
robotic hands, such as the Shadow Dexterous Hand,
can replicate the number of fingers and degrees of
freedom found in a human hand. However, they
lack the flexibility, deformability, and the passive
range of motion inherent in human joints. Achiev-
ing high dexterity often comes at the expense of
reduced force production. This trade-off between
dexterity and force limits the overall performance
of robotic hands, highlighting the need for fur-
ther research in areas such as material science,
mechanical design, and control systems.

3.4.2 Sensors

From a perceptual perspective, human hands have
a vast array of sensors, including mechanoreceptors,
thermoreceptors, and nociceptors, which provide
detailed information about touch, texture, tem-
perature, and potential for damage (Section 2.2).
This sensory input is essential to perform a wide
range of object manipulations, allowing humans
to adjust their grip forces and hand or finger posi-
tions in real time. In contrast, robotic hands rely
on a limited number of tactile or force sensors,
which are often bulky compared to the size of the
robotic fingers and provide only partial informa-
tion about the environment. Additionally, the data
from these sensors requires post-processing to be
interpreted and used effectively in manipulation
tasks. These limitations suggest the need for fur-
ther development in both the design and signal
processing aspects of robotic perception sensors.

3.4.3 Control and Learning

We have seen rapid progress in robot control
recently, with groundbreaking works on control of
complex hands (e.g., OpenAI et al. 2019). How-
ever, the integration of complex sensory feedback
and complex hands remains an open challenge, and
online learning and adaptation are not the primary
focus. Although the control approaches are similar
to those used by humans, they do not reach human
dexterity.

4 Systematic Review of
Robotic Hands and their
Skill Repertoire

We performed a systematic literature review to
connect hands with the skills they can perform. We
use a simplified version of the PRISMA approach
(Moher et al. 2009) as we did not aggregate the
results of empirical studies with reported statis-
tical results, but merely collect information on
demonstrated robot skills.

4.1 Methods

4.1.1 Search Strategy

We extracted information about which hand was
used to perform which skills. For this purpose,
on May 7th 2025, we searched in the following
databases:

• Google Scholar with the search term (hand
or gripper) and (manipulation or grasping or
grip or skill). Google Scholar is one of the
largest scientific databases indexing scientific
articles, preprints, and university websites.

• IEEE Xplore with the search term (hand or
gripper) and (manipulation or grasping or grip
or skill). IEEE is one of the main publishers
of robotic research, also indexing articles from
a few other publishers.

We extracted the title, number of citations, year
of publication, source (e.g., journal, conference),
publisher, text snippet, and URL from Google
Scholar. We extracted the title, number of citations,
year of publication, source, abstract, URL, and
keywords from IEEE Xplore. These records were
filtered and selected in the following step.
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4.1.2 Selection

Automatic filtering

We filtered the results from Google Scholar and
IEEE Xplore using the following criteria: publica-
tion dates must be between 2019 and 2025, the
article must have at least one citation, be at least
four pages long, and be written in the English
language. All IEEE papers were removed from
the initial set retrieved using Google Scholar to
eliminate duplicates. All non-peer-reviewed arti-
cles published on arXiv were removed from our
list. Finally, we filtered IEEE papers based on the
keyword terms to ensure they contain one of these
terms: (hand or gripper) and (manipulation or
grasping or grip or skill).

Manual screening of records

In a manual screening step, we excluded papers not
related to robotic or prosthetic hands or grippers
based on the title, abstract, or text snippet. These
often involve measurements of hand grip strength
in humans or other topics in the medical field.

Assessment of full-text articles

After automatic filtering and manual prescreen-
ing, we kept papers demonstrating skills with
multi-fingered hands (≥ 2 fingers) beyond simple
pinch grasps. We exclude papers with the following
criteria.

• Virtual reality / augmented reality
• Gripper / hand design / development without

demonstration of skills beyond flexion/exten-
sion of fingers

• Development of sensors or perception
approaches without demonstration of skills
beyond flexion/extension of fingers

• Non-anthropomorphic gripper designs, such
as soft fingers or suction mechanisms

4.1.3 Data collection process

For each article, we extract the hand and its fea-
tures, sensor setup, and skill categories that were
presented or are trivially possible to implement
with the hand shown in the article.

Hand features

The features that we use to characterize the
hand and sensor setup are: number of fingers,

degrees of freedom, number of actuators, mecha-
nism features (such as use of the palm, switching
between thumb reposition and opposition, switch-
ing between abduction and adduction, switching
between flexion and extension), sensor features
(tactile / kinesthetic / visual feedback used or
not). We selected these features because they are
defining characteristics of the human hand and
manipulation capabilities. At the same time, they
are achievable by state-of-the-art robotic hands.

Skill repertoire

We examined the papers and extracted any skills
or movements that the authors claim to have gen-
erated for a real or simulated robotic hand. These
manipulation skills were then categorized according
to the taxonomy of manipulation tasks by Dollar
(2014). The taxonomy encompasses both prehensile
skills, such as grasping and in-hand manipulation,
and non-prehensile skills, including pushing and
gestures. It is designed to be independent of the
hand morphology. Furthermore, for in-hand manip-
ulation categories (14 and 15: Contact / Motion
/ Within Hand / (No) Motion at Contact), we
extract the degrees of freedom of an object that
are manipulated.

4.1.4 Risk of bias in individual studies

We see the risk of underreported skill repertoires
for the robotic hands. Not all hands fully exhaust
their skill repertoire in the respective publication.
Even though we aggregate results from various
publications using the same hand, we can not be
sure that the hand would not be able to perform
an in-hand manipulation skill with more DoF or
another category of skills not seen in the publica-
tion. Thus, it is likely that some skills that a hand
would be able to perform are not investigated in
the respective publication. For instance, the users
of prosthetic hands may be able to perform a large
variety of skills in their daily lives that are not
reported in any publication. As a result, we ana-
lyze extreme cases, e.g., the minimum complexity
of a hand required to implement a specific skill.

4.1.5 Summary measures and synthesis
of results

If a hand is used in multiple papers, we aggregated
the results by accumulating all sensor features and
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performed skills. We summarized the results in the
following charts.

Histogram of hand and sensor features

To get an overview of the distribution of hand
and sensor features of the presented hands, we will
present histograms of these features.

Percentage of achieved skills by hands

We use bar charts to show the percentage of hands
with specific features that demonstrate the ability
to perform each skill category. Although in the-
ory, each skill category should be covered by each
hand, this analysis gives us an impression of how
thoroughly the skill repertoire has been examined.

Correlation analysis

We compute Pearson’s product-moment correla-
tion coefficient r between the mechanism features
and the DoF of the two in-hand manipulation
categories. With α = 0.05, we test statistical sig-

nificance using two-sided t-test for tdf = r·
√
N−2√

1−r2
,

df = N − 2 (N : number of samples).

Analysis of extreme cases

We plot the distribution of hand features that
define the hand’s complexity versus skill complexity
to identify extreme cases. More specifically, we look
for simple hands that can perform complex skills.

4.2 Results

4.2.1 Selection

Figure 12 summarizes the selection process. We
include 125 papers in the summary. See supplemen-
tary material for an overview of included articles,
https://figshare.com/s/f4fdd9aca1c134f010dd.

4.2.2 Synthesis of results

Histogram of hand and sensor features

Figure 13 shows a summary of the hand character-
istics for all hands in the analyzed papers.

Percentage of achieved skills by hands

Figure 14 shows the percentage of hands that can
perform a skill from the respective skill category,
ordered by features of the hands. We only show
the result for four skill categories (5 (e.g., push-
ing a coin), 8 (e.g., rolling a ball on a table), 11
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Fig. 12: Summary of selection process.

(e.g., turning a doorknob), 13 (e.g., writing) of
Dollar’s (Dollar 2014) taxonomy due to space con-
straints. These skill categories represent a wide
range of different skills; for example, two of them
are prehensile and two are non-prehensile.

Correlation analysis

Table 2 summarizes the correlation analysis. None
of the correlations were significant.

Analysis of extreme cases

Outliers that we identified in Figure 15 are (1)
Chavan-Dafle et al. (2020) with 2 fingers, 2 DoF, 1
actuator, and 3 controllable DoF of the object, as
well as (2) the following examples of 6 controllable
DoF of the object: two hands of Morgan et al.
(2022) with 3 fingers, 7 DoF, 4 actuators, and
4 fingers, 8 DoF, 4 actuators respectively, and
Liarokapis and Dollar (2019) with 4 fingers, 8 DoF,
4 actuators.

4.3 Discussion

4.3.1 Summary of evidence

Distribution of hand and sensor features

In Figure 13, we can see that the publications are
approximately evenly distributed between one and
four actuation features. The mode of the distribu-
tion over the number of sensors used is one, and
several publications use none, which hints that the
integration of sensor data in hand control is lacking.
Most publications discuss hands with five fingers,
mimicking the human hand. While the number of
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Fig. 14: Percentage of hands that were shown to perform a skill from the respective skill category.

DoF seems almost evenly distributed, the number
of actuators peaks at around five, with more than
20 publications in this bin and more than ten in
the next bin, indicating that developers of hands
reduce the control complexity in comparison to the
human hand. The most prominent exception is the
Shadow Dexterous Hand, which has 20 actuators.

To conclude, the majority of the field aims
at reproducing the look of the human hand by

assembling five fingers, and some of them replicate
all actuation features (palm, reposition/opposition
of the thumb, flexion/extension, abduction/ad-
duction), however, only a few reach the human
hand’s DoF. Even fewer control these indepen-
dently with individual actuators. There are only
a few articles that focus on integrating complex
hand mechanisms with multiple sensor sources.

Table 2: Correlation analysis of mechanism features vs. manipulated DoF in in-hand manipulation
categories.

DoF in Skill Category

Motion at Contact No Motion at Contact

Mechanism Features df = 38 df = 15

Num. of Fingers r ≈ 0.18, tdf ≈ 1.10, p ≈ 0.28 r ≈ 0.04, tdf ≈ 0.16, p ≈ 0.88

DoF r ≈ 0.06, tdf ≈ 0.40, p ≈ 0.69 r ≈ 0.21, tdf ≈ 0.82, p ≈ 0.42

Num. of Actuators r ≈ 0.06, tdf ≈ 0.35, p ≈ 0.73 r ≈ 0.02, tdf ≈ 0.08, p ≈ 0.94

19



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Num. of Actuators

0

1

2

3

4

5

6

De
gr

ee
s o

f F
re

ed
om

 (D
oF

)

(1)

(2)

Contact -> Prehensile -> Motion -> Within Hand -> Motion at Contact: DoF
Contact -> Prehensile -> Motion -> Within Hand -> No Motion at Contact: DoF

Fig. 15: Number of actuators versus degrees of freedom that could be controlled in one of the in-hand
manipulation categories. Extreme cases: (1) 3 controllable DoF of the object: Chavan-Dafle et al. (2020)
with one actuator (2 fingers, 2 DoF); (2) 6 controllable DoF of the object: two hands of Morgan et al.
(2022) with four actuators (3 fingers, 7 DoF; 4 fingers, 8 DoF), and Liarokapis and Dollar (2019) with
four actuators (4 fingers, 8 DoF).

Underexplored skill repertoire

Although the taxonomy used in this systematic
review is designed to be independent of hand mor-
phology (Dollar 2014), we observe that relatively
few hands were evaluated across a diverse set of
categories from this taxonomy. This observation
applies to both complex hands and simple grip-
pers. Specifically, if in-hand manipulation skills are
investigated, these only control a few DoF of the
object.

No correlation between hand and skill
complexity

We could not find a correlation between hand com-
plexity and the DoFs of an object that the hand
is able to manipulate.

Simple mechanisms can be sufficient

We focused on the outliers (Chavan-Dafle et al.
2020; Morgan et al. 2022; Liarokapis and Dollar
2019) and found that they can control many DoF
of an object without complex mechanisms.

4.3.2 Limitations

The range and complexity of possible manipulation
tasks are virtually impossible to quantify. While
we have seen that simple hand mechanisms can
control many DoF of an object, we cannot say that

there is no better way of measuring task complexity,
in which these mechanisms are worse than anthro-
pomorphic hands. A better approach could be to
measure the range of motion and other skill-specific
performance criteria. We are unable to extract
these from all publications in a comparable man-
ner. There is also no notion of complexity in the
other skill categories that we analyzed (e.g., signing
could be thumbs up or complex sign language).

4.3.3 Conclusions

The overall complexity of integrated hand mech-
anisms and sensors does not yet reach the level
of human capabilities. Specifically, the integra-
tion of many sensors and complex mechanisms is
underexplored. It is technically feasible to assem-
ble a Shadow Dexterous Hand with tactile sensors
and use a camera, but it is challenging to control
intelligently.

The entire skill repertoire of most hands
remains underexplored, and we recognize a need
for more thorough and standardized evaluation of
both new hands and existing hands.

There is no correlation between hand com-
plexity and skill complexity for probably two
reasons:

(1) The most complex hands in the analyzed
studies (5 fingers, > 20 degrees of freedom, and
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> 12 actuators) were often capable of more
complex in-hand manipulation skills than demon-
strated. However, most studies use these hands to
manipulate 1–3 degrees of freedom only. Just four
exceptions manipulate ≥ 4 DoF of an object.

(2) Simple, non-anthropomorphic mechanisms
are sufficient to manipulate more degrees of free-
dom than we expected, as demonstrated by the
identified outliers (Chavan-Dafle et al. 2020; Mor-
gan et al. 2022; Liarokapis and Dollar 2019).
When analyzing these more closely, we see that
Chavan-Dafle et al. (2020) use the simplest pos-
sible gripper design with two fingers, two DoF,
and one actuator. They use the environment
intelligently as an additional contact point to
manipulate the object, which could be interpreted
as using an additional virtual finger. Morgan et al.
(2022) and Liarokapis and Dollar (2019) use non-
anthropomorphic designs. Their hands have four
fingers arranged in a circular shape around a cen-
ter point, so that an object can be controlled from
four different directions and enabling control of six
DoF during in-hand manipulation.

5 Discussion

We compared the mechanical, sensory, and motor
control features of the human hand with those of
robotic hands to address the question of whether
robotic hands should be designed to mimic the
human hand.

5.1 Mechanical Features of the
Human Hand

While robots are still inferior to humans in terms
of sensory feedback, control, and learning, the case
is not as clear-cut in terms of mechanical features.
However, the question of whether researchers in
robotics should aim to replicate the human model
remains. This question can be addressed from
multiple perspectives. Concerning the mechanical
features or appearance, we choose to approach it
by the number of fingers. So the question becomes
more concrete:

The case for two fingers

Many tasks can be solved by simple mechanisms
that have two fingers and one actively controlled
degree of freedom. The gripper of Chavan-Dafle

et al. (2020) that can perform in-hand manipula-
tion with 3 DoF by using the environment as a third
contact surface in a clever way. Liang et al. (2024)
build upon this idea. Similarly, humans constantly
exploit environment constraints (Della Santina
et al. 2017). For this to be possible, robotic hands
must be robust, i.e., flexible and soft, with complex-
ity shifting to intelligent motor control and sensor
integration. Sugasawa et al. (2021) argue that ani-
mals that lack complex hands are still capable of
complex manipulation. For instance, birds can use
their bills to grasp, regrasp, and adjust the grasp
of objects to establish a stable grip and gather
information about the object, as well as exhibit
complex behavior, such as building nests. Mon-
tagnani et al. (2016) observe in experiments that
many human grasps can be performed with the
thumb and a single virtual finger. Additional DoFs
in the human hand were only necessary for preci-
sion grasps, which are used less often in activities
of daily living.

The case for three fingers

An additional finger is sometimes needed. Parrots
have a tongue with which they can rotate objects
in their bills or stabilize them during manipula-
tion (Sugasawa et al. 2021), essentially realizing 1
DoF in-hand manipulation with three finger-like
body parts. Similarly, Zhu et al. (2021) found that
the three-fingered BarrettHand can perform func-
tional grasps to use tools such as an electric drill
or a flashlight. Abbasi et al. (2016) provide further
evidence that three fingers are sufficient for most
tasks. They use the grasp taxonomy of Feix et al.
(2015) to analyze the force distribution among fin-
gers and palm in human grasps and found that
only three fingers exert force in most cases. Other
fingers are only used to fine-tune the grasp. Fur-
thermore, Feix et al. (2021) show that two or three
fingers have an increased workspace volume and
rotational range when compared to more fingers for
the specific case of in-hand precision manipulation
of circular objects.

Even in domains where we would expect multi-
fingered hands to excel, the evidence is not clear.
We present examples from deformable object
manipulation and multi-object grasping.

Deformable objects constantly deform under
external forces, e.g., the forces applied by a robotic
hand. The more actively controllable contact points
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or surfaces a gripper has with a deformable object,
the more control it has over the object’s shape.
Interestingly, Sanchez et al. (2018) found that much
research on deformable objects has been conducted
with two fingers and they suggest that using more
fingers allows for finer control. This motivated Don-
aire et al. (2020) to develop a gripper for the tasks
of picking up and placing folded clothes, folding a
t-shirt in the air, and tracing an edge of a grasped
cloth. They found that using three fingers with one
finger opposing two others is particularly useful for
the task of picking and placing folded clothes as
abduction of the two fingers at the bottom creates
a large support surface for the clothes that would
otherwise collapse around a thin support surface.
Hence, even in this domain, in which we assume
that more fingers and DoFs are better, three fingers
may be sufficient.

Sun et al. (2022) distinguish twelve multi-object
grasp types from human demonstrations and a
robot grasping data set, in which eight different
object types were grasped. They replicated many of
these grasps using a BarrettHand with three fingers,
which demonstrates that three fingers can be suffi-
cient for complex grasps involving multiple objects.
However, in some cases, this was not possible, e.g.,
the inverse basket grasp, in which five fingers form
a basket around the objects and apply grip force,
and the multi-finger pinch grasp, in which multiple
pinch grasps were used simultaneously on multiple
objects.

These observations suggest that a wide variety
of manipulation tasks, including simple in-hand
manipulation, can be solved with two fingers or
at most three fingers for additional grasp stabi-
lization during manipulation or tool use. However,
Sugasawa et al. (2021) note that birds make use of
a highly flexible neck that functions as an equiv-
alent to the human wrist during manipulation,
and Montagnani et al. (2015) make the equivalent
observation in human manipulation with restricted
DoFs in their hand. Robotic wrists are often not as
flexible, and orientation changes often require large
repositioning of the arm, which makes operation
in restricted workspaces difficult.

The case for four fingers

Morgan et al. (2022) and Liarokapis and Dollar
(2019) use a non-anthropomorphic design with two
pairs of opposing fingers so that 6 DoF of an object

can be controlled during in-hand manipulation.
This mechanism can be equally dexterous as an
anthropomorphic hand and might even be better
suited for specific in-hand manipulation tasks.

The case for more than five fingers

Humans use two hands for many tasks. An exam-
ple of a complex manipulation task is tying shoe
laces, which requires two pairs of opposing fingers.
Mehring et al. (2019) report that individuals with
six fully functional fingers can solve this task with
only one hand. As the research of Sun et al. (2022)
on multi-object grasps suggests, more fingers allow
handling multiple objects simultaneously and con-
forming better with the shape of multiple objects.
We conclude that the more tasks that have to be
solved in parallel, the more fingers are required.
Complex in-hand manipulation can benefit from
more fingers, and human in-hand manipulation is
likely limited not just by the degrees of freedom per
finger and range of motion per joint, but also by
the number of fingers, as has been demonstrated
by Mehring et al. (2019).

Summary

How many fingers should we use? Almost certainly,
robots do not need five fingers like the human
hand. Currently, there is no evidence that five fin-
gers are optimal. This raises questions about which
configuration is most effective. Two fingers can
be sufficient for many tasks. Moreover, the range
of tasks can even be extended with the effective
use of environment contacts. Three fingers are a
good compromise between dexterity and simplic-
ity, as they improve stability and enable tool use.
A flexible wrist significantly enhances manipula-
tion capabilities considerably for two and three
fingers. Four fingers provide more dexterity for
in-hand manipulation, and with two more fingers,
we found evidence of increasing dexterity. If and
how more fingers can be used to improve robotic
manipulation remains an open question.

5.1.1 Do we need an opposable thumb?

The thumb is the most independently controlled of
the human fingers (Ingram et al. 2008). An oppos-
able thumb improves the prehensile function of a
hand compared to parallel fingers, as it allows us
to exert forces on an object from opposing direc-
tions. However, a robotic hand does not necessarily
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need a thumb that reflects the function and shape
of the human thumb. Parallel jaw grippers, featur-
ing two opposing fingers, are capable of producing
stable grasps. It is not even necessary to have
more than one finger to apply forces from oppos-
ing directions, e.g., it is possible to hold an object
between one finger and a palm, or an octopus
arm can wrap around an object. The BarrettHand
has three fingers, and two of them can rotate 180
degrees around their base. This capability enables
configurations in which one finger is opposing the
others, in which all three fingers are equally dis-
tributed around the object, or in which all fingers
are parallel. Billard and Kragic (2019) point out
that the human thumb creates an asymmetry and
constrains the orientation of the hand. They enter-
tain the idea of designing hands with more than
one opposing finger to enable more dexterous in-
hand manipulation, which would usually require
two hands. There are examples of such hands with
two pairs of opposing fingers (Morgan et al. 2022;
Liarokapis and Dollar 2019).

In conclusion, it is necessary to exert opposing
forces; however, the human example is by no means
the only solution, and it is most likely not the best
either. We suggest exploring the use of more than
one pair of opposing fingers for complex tasks. If
simplicity is preferred, mechanisms such as the
BarrettHand, which allow the exertion of opposing
forces, are sufficient.

5.1.2 Do we need so many degrees of
freedom, including
abduction/adduction and three
flexion/extension joints per
finger, and do they need to be
individually controllable?

Comparing independent finger movements of
humans versus monkeys, Häger-Ross and Schieber
(2000) found that individuation is higher in human
subjects. Specifically, they found that the thumb
and index fingers are the most independently mov-
ing fingers, while the ring and middle fingers are
most coupled with the movement of other fingers.
This observation coincides with the fact that the
thumb, index finger, and little finger have more
muscles for individual actuation of these fingers.
The humans’ greater independence of finger move-
ments in comparison to macaques, for instance,
arises from anatomical differences such as splitting

of a separate muscle belly and tendons, and a loss
of tendons in multitendoned muscles (Häger-Ross
and Schieber 2000), but also from finer represen-
tation in the primary motor cortex. Nevertheless,
humans still often do not control each finger inde-
pendently. Häger-Ross and Schieber (2000) found
that the angular motion mostly happens in the
middle joint of each finger (usually PIP joint, MCP
for the thumb). This observation indicates that
a reduced set of actively controlled flexion joints
might be sufficient.

By constraining individual fingers of human
subjects during manipulation experiments, Mon-
tagnani et al. (2016) explored the relevance of
independent fingers in activities of daily living.
Their results suggest that the precision grasps of
the human hand with small contact areas rely on
independent abduction/adduction of the fingers
more than on independent flexion/extension, as
this allows for precise opposition of the thumb.

In conclusion, a robotic hand does not nec-
essarily need 24 DoFs. However, abduction/ad-
duction support precise manipulation, and the
middle joints of the fingers should be actuated,
while the other flexion joints could be passive. A
multi-fingered hand should have three individually
controlled fingers.

5.1.3 Do we need a large active and
even larger passive range of
motion?

Not many authors touch this topic. Based on
the literature we analyzed, we cannot provide a
conclusive answer.

5.1.4 Do we need a soft and deformable
surface, particularly at the large
surface of the flexible palm?

Abbasi et al. (2016) measure the distribution of
forces for different grasp types. Although the only
force sensors on the palm that they use are below
the little finger, their heatmaps suggest that the
palm is important for human grasps. The benefit
of flexible and soft hands is twofold: (1) contact
with the environment does not damage the hard-
ware, and (2) support of prehension by adaptation
to the shape of objects. Humans do not avoid con-
tact with the environment during manipulation;
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they actively use it and exploit environmental con-
straints. For example, when grasping a flat object
from a table, they often slide it to the edge to grasp
it more easily (Della Santina et al. 2017).

5.1.5 Do we need the ability to
produce high grip forces in
combination with dexterity?

While we can roughly match the degrees of free-
dom and number of fingers of a human hand, we
are not yet able to match the force-to-weight ratio
in dexterous hands. In principle, a higher force-
to-weight ratio is desirable, but only if it does
not compromise other performance factors such as
speed, precision, or compliance. In many applica-
tions, especially those relying on form closure or
simple grasps, high grip force may not be necessary.
Instead, low-force, lightweight, and mechanically
simple three-fingered designs are often sufficient
and even preferable due to their robustness, lower
cost, and ease of control. The key trade-off lies in
determining whether the added force capacity truly
enhances task performance or whether it intro-
duces unnecessary complexity and compromises
overall hand functionality.

5.2 Sensors of the Human Hand

As introduced earlier, robots are still inferior to
humans in terms of sensory feedback. We also pre-
sented some examples of the implementation of
complex skills with current robot hands and dis-
cussed the case of teleoperation, which suggests
that cognition appears to be the primary constraint
rather than hardware and sensing. For instance,
surgeons accomplish remarkable tasks with paral-
lel grippers and no haptic feedback. However, this
ability depends on extensive training and experi-
ence to compensate for limited feedback and comes
at the cost of increased cognitive load (Odoh et al.
2024).

Moreover, from our systematic review, we can
see that the mode of the distribution over the
number of sensors used is one, and several publi-
cations use none, which hints that the integration
of sensor data in robotic hand control is lacking.
There are only a few articles that focus on inte-
grating complex hand mechanisms with multiple
sensor sources. Thus, we cannot provide conclusive

answers for this section; nevertheless, we attempt
to provide some indications.

This raises the question of whether advanced
robotic hands should integrate haptic perception
and, if so, to what extend? To address this question
more concretely and provide actionable recom-
mendations to practitioners, we subdivide these
questions into the advantages and disadvantages of
haptic feedback and then analyze the most relevant
aspects of sensory feedback.

5.2.1 Is visual feedback enough?

Visual feedback plays a significant role in dexterous
manipulation, as it provides crucial information
about the external environment and the object’s
spatial properties. For instance, visual information
is critical for coordinating hand movements with
external objects, especially in dynamic environ-
ments (Land and McLeod 2000). However, relying
solely on visual feedback may not be sufficient for
optimal performance in many situations, because
in situations where vision is impaired or obstructed,
relying solely on visual feedback can lead to sig-
nificant performance decrements (Johansson et al.
1992). Relying entirely on visual feedback increases
cognitive load and can slow down processing speed,
as visual information must be interpreted and
translated into action (Odoh et al. 2024). The com-
putational cost is also significant in the case of
robots (Goyal et al. 2023).

5.2.2 What are the benefits of haptic
perception?

Proprioception provides crucial information about
the position and movement of limbs (Lederman
and Klatzky 2009), enabling coordinated hand
movements and precise timing in complex tasks.
Tactile feedback enables finer control over grip force
and manipulation precision. It helps individuals
adjust their grip in real-time to prevent drop-
ping or crushing objects (Johansson and Flanagan
2009). The combination of tactile and propriocep-
tive feedback allows humans to adapt to varying
textures, weights, and other properties of objects
in a dynamic environment (Lederman and Klatzky
2009).
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5.2.3 Do we need proprioceptive
feedback?

Proprioception provides continuous information
about the position and movement of joints and
limbs (Lederman and Klatzky 2009), which is vital
for coordinating complex hand movements. Thus,
impairments in proprioception can lead to inaccu-
rate limb positioning and movement trajectories
(Ghez et al. 1995), making precise manipulation
difficult. It aids in motor learning by providing
feedback that helps refine motor actions and adjust
movements based on sensory information (Rossi
et al. 2021).

5.2.4 Do we need tactile feedback?

Tactile feedback enables the precise control and
modulation of grip force, allowing individuals
to dynamically adjust grip pressure to prevent
object slippage or damage (Johansson and Flana-
gan 2009). It enables the detection of an object’s
texture and other surface properties, which are
essential for determining the appropriate grip strat-
egy and ensuring secure handling (Lederman and
Klatzky 2009). Tactile feedback plays a crucial
role in object recognition and differentiation by
providing information about shape, size, and mate-
rial properties when visual inputs are limited
(Lederman and Klatzky 2009).

5.2.5 How much resolution or accuracy
is required?

Only 62 articles include proprioceptive perception
in their setup, but not all use it to perform the
skills. Of those 62 articles, only 18 articles use
tactile perception to implement the skills, from
which 7 use it as a binary or average contact signal.
Thus, we cannot provide a conclusive answer or
guidelines regarding the ideal spatial, temporal, or
force resolution required to improve dexterity.

5.2.6 Do robots need thermoreceptors?

Thermoreceptors allow for the detection of tem-
perature changes in objects being manipulated,
which can be useful to discriminate between mate-
rials (Bhattacharjee et al. 2021). Robots have also
been shown to benefit from thermal perception
(Bhattacharjee et al. 2021).

5.2.7 Do robots need nociceptors?

Nociceptors play a crucial role in detecting harmful
stimuli and triggering reflexive responses to pre-
vent injury. In robotics, incorporating nociception
could extend robot lifespan, reduce maintenance
needs, and enhance safety by recognizing harm-
ful interactions. Additionally, nociception may
enhance a robot’s positioning speed and accuracy
(Navarro-Guerrero et al. 2017b,a), although its
specific impact on manipulation tasks requires fur-
ther study. Additionally, nociception could foster
biologically like behaviors and increase the non-
verbal interpretability of robot behavior. However,
building specific nociceptors in robots may not
be necessary, as they could be represented by a
combination of other sensory modalities.

5.2.8 What would be more important
for robots: proprioceptive and
tactile feedback?

Both systems provide critical information, but
proprioceptive and tactile feedback offer distinct
types of insights. These differences can signifi-
cantly influence specific manipulation capabilities,
as each system supports different functions during
manipulation.

Proprioceptive feedback provides essential infor-
mation about the position and movement of limbs
and joints. It is essential to coordinate complex
hand movements efficiently (Lederman and Klatzky
2009). This feedback is crucial for maintaining sta-
bility and coordination. These are both needed
for precise and controlled manipulation, especially
when visual feedback is limited. Proprioception
plays a central role in motor learning and adapta-
tion, enabling individuals to refine their movements
and adjust to new tasks.

Tactile feedback is crucial for detecting the
texture and material properties of objects. It
enables fine discrimination between different sur-
faces, which is vital for manipulation tasks (Leder-
man and Klatzky 2009). Tactile feedback provides
important cues for modulating grip force, pre-
venting slippage, and ensuring secure handling
of objects. Tactile sensors provide instant feed-
back about contact with objects. This facilitates
real-time adjustments essential for dynamic tasks
(Lederman and Klatzky 2009). For dexterous
manipulation, such as material handling, texture

25



discrimination, or grip force precision, tactile feed-
back is a more advantageous complement to visual
feedback than proprioception.

6 Conclusion

In the previous section, we provided recommenda-
tions for designing robotic hands. For prosthetics,
emulating the mechanical characteristics of the
human hand is a sensible goal. For robots, how-
ever, this is less applicable. With intelligent control
strategies, even simple two- or three-fingered grip-
pers can perform tasks effectively, for example, by
leveraging the environment to counteract forces
from other directions. We can even go beyond
human manipulation abilities. More complex, non-
anthropomorphic hands can solve complex manip-
ulation problems more easily or multiple problems
simultaneously because they can directly control
many DoFs of one or multiple objects without repo-
sitioning the hand. They could also solve various
manipulation tasks simultaneously. However, how
this can be done remains an open question.

However, are we, as roboticists, actually look-
ing at the right defining characteristics of human
hands? While we can roughly match the degrees of
freedom and number of fingers of a human hand,
we are not yet able to match the force-to-weight
ratio in dexterous hands. This fact is well-known,
but this may not be the most interesting aspect of
a human hand. We assume that learning and con-
trol are a large part of what is currently missing for
human-like dexterity. However, learning is a form
of iteratively improving stochastic control that is
only possible with robust hardware. The human
hand is soft, deformable, and flexible, with a larger
passive range of motion, which makes it particu-
larly robust and suited for approximate control
and manipulation under environmental uncertainty.
We argue that we optimized hand designs for the
wrong characteristics of human hands in the past.
We can perform complex skills with three or four
fingers and fewer degrees of freedom. Robustness
to environmental conditions should be the focus of
hand design.

The synergetic combination of mechanical
aspects, perception, and control might be more
important for a robotic hand to match and poten-
tially surpass human dexterity than anthropomor-
phic kinematics alone. Teleoperation demonstrates

that the most limiting factor currently is the cog-
nitive ability of robotic systems, as surgeons can
perform complex procedures using simple grip-
pers and tools without haptic feedback. However,
haptic feedback, even in its current state of devel-
opment, has a significant overall effect on measures
of applied forces, completion time, accuracy, and
success rates (Bergholz et al. 2023).

Our systematic review reveals a key short-
coming: most hands are tested within only a few
categories of Dollar’s taxonomy (Dollar 2014),
and even within these categories, there is lim-
ited variety. This lack of comprehensive evaluation
is especially evident in cases of complex hands,
which are seldom tested for in-hand manipulation.
To address this, the field needs robust evaluation
protocols that can assess complete mechanism-
sensor-software systems across all skill categories
and complexity levels. Such protocols must demon-
strate a hand’s mechanical and functional capa-
bilities, especially by requiring the intelligent use
of advanced sensors. For example, to truly evalu-
ate the benefits of tactile sensors, protocols should
include complex manipulation tasks that demand
fine motor control. Establishing these benchmarks
is crucial for making meaningful comparisons of
hand designs and for guiding progress in robotic
hand development.

Supplementary information. An overview of
the analyzed papers is available at https://figshare.
com/s/f4fdd9aca1c134f010dd.
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Appendix A Radar Diagram
of Skills

Figure A1 shows a radar diagram for manipulation
skills similar to ones in Figure 8 for robotic and
prosthetic hands. The following skills are displayed.
We explain the human way of implementing them.
This is by no means a scientifically grounded exact
study, however, it gives an intuitive idea of the
required complexity of the mechanisms to realize
these skills.

• Open handed holding: Only a large support
surface like the palm of the human hand
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Tool use: screw driver
Gesture: sign language
Button up
Fine motor skill: false cut

Fig. A1: Radar diagram of some selected skills.

is needed to hold an object. No joints are
necessary.

• Pointing / pushing: With an extended index
finger and all other fingers flexed, the index
finger points in the direction of an object of
interest (pointing) or pushes an object, e.g.,
on a table in some desired direction (pushing).

• Scratching: With an index finger, we can
scratch on a surface with flexion in only one
joint.

• Grasping / holding: We can grasp smaller
objects just with the thumb and index finger
by bringing them closer to the object, e.g., by
flexion of the index finger.

• Flipping a page: We need two fingers to grasp
a page of a book, maybe separate it from
other pages (e.g., by extension of the thumb
and flexion of the index finger), and turn it
around.

• Thumbs up gesture: With the thumb in repo-
sition, we can make this gesture by extending
one joint of the thumb. The gesture only
makes sense if we can make a fist through
flexion of at least another finger.

• Handwriting: With the thumb on the side of
the index finger, we can hold a pen between
thumb, index finger, and middle finger by
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flexing the thumb. Control of the pen in a
plane can be achieved with flexion/extension
of the thumb and abduction/adduction of the
index and middle finger in one direction as
well as flexion in all three fingers in another
direction.

• Using a screw driver: In order to use a screw
driver effectively, we hold it between thumb,
index finger, middle finger, and palm. The
ring finger can support the screw driver close
to the palm when flexed. We can rotate the
screw driver with thumb and middle finger,
but when the middle finger has to go back
to the initial position, the index finger has to
hold the screw driver. The rotation can be
realized with the reposition/opposition and
flexion/extension of the thumb, as well as
flexion/extension and minor abduction/ad-
duction of the middle finger. The supporting
index finger can make and break contact
through flexion.

• Sign language: For ”I love you” in American
sign language, five fingers are usually required,
these have to provide flexion/extension DOFs,
and the thumb has to be in reposition.

• Button up: Two hands are needed to but-
ton up a shirt. While we can hold the button
between thumb and index finger, it is easier
to control the shirts shape with thumb, index
finger, and middle finger of the other hand.
Flexion/extension for all of these fingers is
necessary. In addition, with reposition/oppo-
sition control of both thumbs, we have enough
degrees of freedom for fine control of the shirt
and button.

• False cut (magic trick): False cuts are card
tricks. Although cards are handled as stacks,
for some tricks it is necessary to handle three
stacks of cards at the same time. This is usu-
ally done with two hands so that 2–4 points
of contact between the hands and the stack of
cards exist. For example, the right hand holds
one stack of cards between little finger, ring
finger, and thumb, the left hand holds one
stack between base of the thumb, palm, ring
finger, and little finger, a third stack of cards
is manipulated with the left index and middle
finger and the right index and middle finger.
A rotational movement to the third stack of
cards can be created by finger movements or
movements of the wrist and forearm. Precise

opposition of fingers (e.g., thumb and ring
finger of the right hand in the previous exam-
ple) is necessary, hence, abduction/adduction
as well as reposition/opposition is needed.
To grasp and hold the stacks, flexion/exten-
sion is needed. A minimum of eight fingers is
required in this example and a similar number
of degrees of freedom.
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Anatomy and Biomechanics of the Wrist and
Hand. In: Sports Injuries: Prevention, Diagnosis,
Treatment and Rehabilitation, 2nd edn. Springer,
Berlin, Heidelberg, p 441–447, https://doi.org/
10.1007/978-3-642-36569-0 49

Tassa Y, Erez T, Todorov E (2012) Synthesis and
Stabilization of Complex Behaviors Through
Online Trajectory Optimization. In: IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), Vilamoura-Algarve, Por-
tugal, pp 4906–4913, https://doi.org/10.1109/
IROS.2012.6386025

Taylor JL (2013) Kinesthetic Inputs. In: Neuro-
science in the 21st Century: From Basic to
Clinical, vol Sensory Systems (Neuroanatomy
and Physiology). Springer New York, p 931–964

Todorov E (2004) Optimality Principles in Sen-
sorimotor Control. Nat Neurosci 7(9):907–915.
https://doi.org/10.1038/nn1309

Todorov E, Jordan MI (2002) Optimal Feedback
Control as a Theory of Motor Coordination. Nat
Neurosci 5(11):1226–1235. https://doi.org/10.
1038/nn963

33

https://doi.org/10.1177/0278364918779698
https://doi.org/10.1007/s002210000420
https://doi.org/10.1007/s002210000420
https://doi.org/10.1177/02783649231201196
https://doi.org/10.1177/02783649231201196
https://doi.org/10.1037/h0076770
https://doi.org/10.1007/s002210050738
https://doi.org/10.1007/978-1-4899-2177-2_16
https://doi.org/10.1007/978-1-4899-2177-2_16
https://doi.org/10.1109/JSEN.2013.2268690
https://doi.org/10.34133/2019/3018568
https://doi.org/10.34133/2019/3018568
https://doi.org/10.1016/S0006-8993(02)03288-2
https://doi.org/10.1016/S0006-8993(02)03288-2
https://doi.org/10.1016/S0167-9457(00)00024-5
https://doi.org/10.1016/S0167-9457(00)00024-5
https://doi.org/10.1098/rspb.2020.3184
https://doi.org/10.1098/rspb.2020.3184
https://doi.org/10.1109/ICRA46639.2022.9812388
https://doi.org/10.1109/ICRA46639.2022.9812388
https://doi.org/10.1007/978-1-4614-7320-6_381-1
https://doi.org/10.1007/978-1-4614-7320-6_381-1
https://doi.org/10.1007/978-3-642-36569-0_49
https://doi.org/10.1007/978-3-642-36569-0_49
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1038/nn1309
https://doi.org/10.1038/nn963
https://doi.org/10.1038/nn963


Tomo TP, Somlor S, Schmitz A, et al (2016a)
Design and Characterization of a Three-Axis
Hall Effect-Based Soft Skin Sensor. Sensors
16(4):491. https://doi.org/10.3390/s16040491

Tomo TP, Wong WK, Schmitz A, et al (2016b)
A Modular, Distributed, Soft, 3-Axis Sen-
sor System for Robot Hands. In: IEEE-RAS
International Conference on Humanoid Robots
(Humanoids), pp 454–460, https://doi.org/10.
1109/HUMANOIDS.2016.7803315

Tomo TP, Regoli M, Schmitz A, et al (2018a)
A New Silicone Structure for uSkin—a Soft,
Distributed, Digital 3-Axis Skin Sensor and
Its Integration on the Humanoid Robot iCub.
IEEE Robot Autom Lett 3(3):2584–2591. https:
//doi.org/10.1109/LRA.2018.2812915

Tomo TP, Schmitz A, Wong WK, et al (2018b)
Covering a Robot Fingertip With uSkin: A
Soft Electronic Skin With Distributed 3-Axis
Force Sensitive Elements for Robot Hands. IEEE
Robot Autom Lett 3(1):124–131. https://doi.
org/10.1109/LRA.2017.2734965

Toprak S, Navarro-Guerrero N, Wermter S
(2018) Evaluating Integration Strategies for
Visuo-Haptic Object Recognition. Cognit Com-
put 10(3):408–425. https://doi.org/10.1007/
s12559-017-9536-7

Wade J, Bhattacharjee T, Williams RD, et al (2017)
A Force and Thermal Sensing Skin for Robots in
Human Environments. Rob Auton Syst 96:1–14.
https://doi.org/10.1016/j.robot.2017.06.008

Wadman W, Denier J, Geuze R, et al (1979) Con-
trol of Fast Goal-Directed Arm Movements. J
Hum Movement Stud 5(1):3–17

Wang X, Baron L, Cloutier G (2008) Topology
of Serial and Parallel Manipulators and Topo-
logical Diagrams. Mech Mach Theory 43(6):754–
770. https://doi.org/10.1016/j.mechmachtheory.
2007.05.005

Wang YC, Bohannon RW, Li X, et al (2018)
Hand-Grip Strength: Normative Reference Val-
ues and Equations for Individuals 18 to 85
Years of Age Residing in the United States. J
Orthop Sports Phys Ther 48(9):685–693. https:

//doi.org/10.2519/jospt.2018.7851

Ward-Cherrier B, Pestell N, Cramphorn L, et al
(2018) The TacTip Family: Soft Optical Tactile
Sensors with 3D-Printed Biomimetic Morpholo-
gies. Soft Robot 5(2):216–227. https://doi.org/
10.1089/soro.2017.0052

Wells R, Greig M (2001) Characterizing Human
Hand Prehensile Strength by Force and Moment
Wrench. Ergonomics 44(15):1392–1402. https:
//doi.org/10.1080/00140130110109702

Wolpert DM, Flanagan JR (2001) Motor Predic-
tion. Curr Biol 11(18):R729–R732. https://doi.
org/10.1016/S0960-9822(01)00432-8

Wolpert DM, Ghahramani Z (2000) Computational
Principles of Movement Neuroscience. Nat Neu-
rosci 3(11):1212–1217. https://doi.org/10.1038/
81497

Wolpert DM, Diedrichsen J, Flanagan JR (2011)
Principles of Sensorimotor Learning. Nat Rev
Neurosci 12(12):739–751. https://doi.org/10.
1038/nrn3112

Xia Z, Deng Z, Fang B, et al (2022) A
Review on Sensory Perception for Dexter-
ous Robotic Manipulation. Int J Adv Robot
Syst 19(2):17298806221095974. https://doi.org/
10.1177/17298806221095974

Young KA, Wise JA, DeSaix P, et al (2013)
Anatomy & Physiology. XanEdu Publishing Inc.

Yuan W, Dong S, Adelson EH (2017) Gel-
Sight: High-Resolution Robot Tactile Sensors
for Estimating Geometry and Force. Sensors
17(12):2762. https://doi.org/10.3390/s17122762

Zakka K, Wu P, Smith L, et al (2023) RoboPi-
anist: Dexterous Piano Playing with Deep Rein-
forcement Learning. In: Conference on Robot
Learning (CoRL), vol 229. PMLR, pp 2975–2994

Zhu T, Wu R, Lin X, et al (2021) Toward Human-
Like Grasp: Dexterous Grasping via Semantic
Representation of Object-Hand. In: IEEE/CVF
International Conference on Computer Vision
(ICCV), Virtual, pp 15741–15751

34

https://doi.org/10.3390/s16040491
https://doi.org/10.1109/HUMANOIDS.2016.7803315
https://doi.org/10.1109/HUMANOIDS.2016.7803315
https://doi.org/10.1109/LRA.2018.2812915
https://doi.org/10.1109/LRA.2018.2812915
https://doi.org/10.1109/LRA.2017.2734965
https://doi.org/10.1109/LRA.2017.2734965
https://doi.org/10.1007/s12559-017-9536-7
https://doi.org/10.1007/s12559-017-9536-7
https://doi.org/10.1016/j.robot.2017.06.008
https://doi.org/10.1016/j.mechmachtheory.2007.05.005
https://doi.org/10.1016/j.mechmachtheory.2007.05.005
https://doi.org/10.2519/jospt.2018.7851
https://doi.org/10.2519/jospt.2018.7851
https://doi.org/10.1089/soro.2017.0052
https://doi.org/10.1089/soro.2017.0052
https://doi.org/10.1080/00140130110109702
https://doi.org/10.1080/00140130110109702
https://doi.org/10.1016/S0960-9822(01)00432-8
https://doi.org/10.1016/S0960-9822(01)00432-8
https://doi.org/10.1038/81497
https://doi.org/10.1038/81497
https://doi.org/10.1038/nrn3112
https://doi.org/10.1038/nrn3112
https://doi.org/10.1177/17298806221095974
https://doi.org/10.1177/17298806221095974
https://doi.org/10.3390/s17122762


Zitkovich B, Yu T, Xu S, et al (2023) RT-2:
Vision-Language-Action Models Transfer Web
Knowledge to Robotic Control. In: Conference
on Robot Learning (CoRL), vol 229. PMLR, pp
2165–2183

Publisher’s Note. Springer Nature remains
neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

35


	Introduction
	The Human Hand
	Biomechanics of the Human Hand
	Joints and Degrees of Freedom
	Range of Motion
	Muscles and Tendons
	Wrist (extrinsic muscles, Figure 3a)
	Extrinsic finger muscles, excluding the thumb (Figure 3a)
	Intrinsic and extrinsic muscles of the thumb (Figure 3b)
	Other intrinsic muscles (Figure 3b)

	Redundancy
	Force
	Coupling
	Variations
	Soft cover (muscles and skin)

	Sensors of the Human Hand and Perception
	Biomechanical aspects of haptic perception
	Skills enabled by haptic perception
	Role in Grasping

	Theories of Human Motor Control and Learning
	Central Nervous System (CNS)
	Motor cortex
	Cerebellum
	Basal ganglia

	Motor Program Theory
	Dynamical Systems Theory
	Stochastic Optimal Feedback Control
	Bayesian Decision Theory and Predictive Motor Control
	Sensorimotor Learning

	Summary: Defining Characteristics of the Human Hand
	Biomechanics
	Perception
	Control and Learning


	Robotic Hands
	Mechanics
	Perception
	Commercial Sensors
	Tactile Servoing
	Tactile servoing
	Slip detection
	Grasp quality measure


	Robot Control
	Planning
	Dynamical Movement Primitives
	Stochastic Optimal Feedback Control, Optimal Control, Model-Predictive Control, and Reinforcement Learning
	Vision-Language-Action Models

	Summary
	Mechanics
	Sensors
	Control and Learning


	Systematic Review of Robotic Hands and their Skill Repertoire
	Methods
	Search Strategy
	Selection
	Automatic filtering
	Manual screening of records
	Assessment of full-text articles

	Data collection process
	Hand features
	Skill repertoire

	Risk of bias in individual studies
	Summary measures and synthesis of results
	Histogram of hand and sensor features
	Percentage of achieved skills by hands
	Correlation analysis
	Analysis of extreme cases


	Results
	Selection
	Synthesis of results
	Histogram of hand and sensor features
	Percentage of achieved skills by hands
	Correlation analysis
	Analysis of extreme cases


	Discussion
	Summary of evidence
	Distribution of hand and sensor features
	Underexplored skill repertoire
	No correlation between hand and skill complexity
	Simple mechanisms can be sufficient

	Limitations
	Conclusions


	Discussion
	Mechanical Features of the Human Hand
	The case for two fingers
	The case for three fingers
	The case for four fingers
	The case for more than five fingers
	Summary

	Do we need an opposable thumb?
	Do we need so many degrees of freedom, including abduction/adduction and three flexion/extension joints per finger, and do they need to be individually controllable?
	Do we need a large active and even larger passive range of motion?
	Do we need a soft and deformable surface, particularly at the large surface of the flexible palm?
	Do we need the ability to produce high grip forces in combination with dexterity?

	Sensors of the Human Hand
	Is visual feedback enough?
	What are the benefits of haptic perception?
	Do we need proprioceptive feedback?
	Do we need tactile feedback?
	How much resolution or accuracy is required?
	Do robots need thermoreceptors?
	Do robots need nociceptors?
	What would be more important for robots: proprioceptive and tactile feedback?


	Conclusion
	Supplementary information
	Funding
	Conflict of interest/Competing interests
	Ethics approval
	Open Access
	Consent to participate
	Consent for publication/Informed consent
	Availability of data and materials
	Code availability




	Radar Diagram of Skills
	Publisher's Note


