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Abstract— Tactile perception is essential for human interaction
with the environment and is becoming increasingly crucial
in robotics. Tactile sensors like the BioTac mimic human
fingertips and provide detailed interaction data. Despite its
utility in applications like slip detection and object identification,
this sensor is now deprecated, making many existing datasets
obsolete. This article introduces a novel method for translating
data between tactile sensors by exploiting sensor deformation
information rather than output signals. We demonstrate the
approach by translating BioTac signals into the DIGIT sensor.
Our framework consists of three Steps: first, converting
signal data into corresponding 3D deformation meshes; second,
translating these 3D deformation meshes from one sensor to
another; and third, generating output images using the converted
meshes. Our approach enables the continued use of valuable
datasets.

I. INTRODUCTION

Tactile feedback is gaining significant attention in robotics
[1], [2]. Tactile sensors leverage various information modali-
ties, come in diverse shapes and sizes, and are implemented
in a wide range of technologies. This diversity makes the
exchange of data and trained models challenging. Moreover,
as sensor technology improves, datasets become deprecated.
For instance, BioTac by SynTouch, was a high-end tactile
sensor, designed like a human fingertip. It has an elastomer
covering a rigid core filled with an incompressible conductive
fluid. The sensor outputs voltage readings from 19 internal
electrodes, capturing changes in the fluid. These readings are
processed as time-series signal data [3]-[5]. The BioTac
has been proven useful in various applications such as
detecting object slips and the direction of slips [6], [7]
or identifying objects [8]. However, this sensor is now
deprecated. Consequently, many existing datasets, such as the
BioTac SP direction of slip dataset [7], the BioTac SP grasp
stability dataset [6] or BioTac 2P grasp stability dataset [9],
are now obsolete. Hence, there is a need to convert existing
datasets into formats compatible with newer sensor modalities,
allowing researchers to leverage intrinsic information still
relevant to specific tasks.

Although some research attempts to transfer between
modalities, for instance, Lee et al. [10] developed a framework
to generate tactile images from the GelSight sensor using
digital camera images of various cloth materials and vice
versa, or the ViTac dataset [11], used to train the networks,
includes labeled images from the GelSight sensor and a digital
camera of 100 fabric pieces. Unfortunately, these approaches
require labeled data from both sensor types, and the modality
of the source and target sensors is the same, i.e., vision.
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In contrast, our approach focuses on transferring the
encoded information and knowledge at the deformation level,
eliminating the need for congruence in the tactile output
of the sensors. To our knowledge, this is the first article
showing transfer between two sensors with entirely different
sizes, shapes, and output spaces. Additionally, our approach
does not require end-to-end labeled sensor outputs and can
be generalized to any force or orientation. Therefore, our
method enables the utilization of any existing datasets. We
demonstrate our approach by transferring low-resolution
tactile (time series) data from a BioTac into a vision-based
DIGIT sensor [12]. The DIGIT sensor is a low-cost, high-
resolution, vision-based tactile sensor.

II. METHODOLOGY

Transferring between different modalities poses challenges
due to data representations and encoding variations. To
address these issues, we propose a three-step solution,
depicted in Fig. 1. Step I: We initially predict the BioTac
surface deformation from the BioTac input signals. Step II:
We convert the BioTac surface mesh deformation to DIGIT
surface mesh deformation since the physical interaction
of both sensors can be modeled by a mesh deformation
independently of sensor output modality. Step III: We generate
the DIGIT sensor image from the converted deformation.

Step I: Predicting BioTac Mesh Deformation

We adopt a similar methodology to that proposed by Narang
et al. [13]. We train a disentangled variational autoencoder
(B-VAE) [14] to reconstruct the BioTac sensor outputs. This
network is denoted as Signal VAE BioTac (SVB).

We also train another 3-VAE to reconstruct the 3D mesh
deformation of the BioTac sensor, denoted as Mesh VAE
BioTac (MVB). To model these deformations and collect the
dataset used for this task, we employ the Isaac Gym BioTac
model [13].

Next, we train an MLP network to map between the latent
vectors of the SVB and the MVB network, referred to as Signal
to Mesh Projection Network (S2MPN). For this latent space
mapping, we use the publicly available dataset collected by
Narang et al. [13].

Step II: Modeling of Mesh Deformation

In this Step, we train a third 3-VAE [14], with the same
architecture used for the MVB network, this time to reconstruct
the DIGIT 3D deformations. This network is denoted as Mesh
VAE DIGIT (MVD). Afterward, we train an MLP network
to map the latent space of the already trained MVB encoder
network in Step I to the latent space of the trained MVD



encoder network, we denote this network as Mesh to Mesh
Projection Network (M2MPN).

To train the M2MPN, we collected over S0K unique mesh
deformations for both BioTac and DIGIT using the Isaac Gym
simulator. To ensure alignment between the two mesh datasets,
we maintained consistent force, angle, and position parameters
for each interaction pair since labeled and matching BioTac
DIGIT meshes are required for training the M2MPN. To
address the difficulty in representing side touches arising
from the differing shapes of the DIGIT and BioTac sensors,
we rotate and translate the BioTac sensor on its axis within its
horizontal plane. This transformation mimics the unfolding of
the BioTac elastomer to align with and cover the flat surface
of the DIGIT sensor. This solution ensures that forces and
deformations resulting from side touches correspond with the
other sensor.

Step III: From Surface Deformation to DIGIT’s output

The DIGIT sensor contains a camera that captures light
reflections caused by surface deformations on the silicon-
based gel pad when interacting with other objects. We adapt
the simulation model Taxim [15] to simulate DIGIT images.
Taxim calculates a height map of the gel pad using object
point clouds from which the corresponding DIGIT image is
estimated. We extend this approach to determine the height
map using the deformation mesh.
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Fig. 1. Framework for translating BioTac signals into DIGIT images. Step 1:
Convert BioTac input signals to BioTac surface deformation. Step 2: Convert
BioTac surface mesh deformation to DIGIT surface mesh deformation. Step
3: Generate DIGIT’s output from the surface mesh deformation.

III. RESULTS AND CONCLUSION

As a proof of concept, we trained the networks with our
paired generated dataset collected with both sensors while
interacting with a spherical indenter. We then selected a test
set from available real BioTac signal data [13] and converted
it to DIGIT output images. Fig. 2 shows qualitative results
of five selected BioTac signals that we converted to DIGIT
images using our framework.

Fig. 2. Converted samples. First row: Real electrode values. Second row:
Ground-truth BioTac mesh deformations. The outer frame represents the
“unfolded” BioTac surface. Third row: Converted DIGIT mesh deformations.
Fourth row: DIGIT output images. The third and fourth rows were generated
using the first row as input.

To conclude, we address the problem of translating tactile
sensor outputs regardless of shape, size, and output represen-
tation mismatch, which we demonstrate on the BioTac and
the DIGIT sensors. We are preparing an extended version
of this work for ICRA2025, including other indenters and a
more detailed explanation of the approach. In future work,
we plan to refine the approach and convert popular BioTac
datasets to DIGIT images.
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