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Abstract— Tactile sensors are crucial for many robotic
applications, such as dexterous robotic gripping, prosthetics,
and surgical robots. However, only a few companies offer this
type of sensor. Additionally, these sensors are too expensive and
fragile to be used in many applications. We are developing
a vibration-based tactile sensor integrated into a robotic
hand as a demonstration. We focus on improving machine
learning algorithms for texture recognition, object detection,
and localization of touch stimuli using body-borne vibrations,
creating a more efficient and cost-effective solution for diverse
applications such as robotics. We are transferring the technology
to a start-up developing robotics hands and grippers.

I. INTRODUCTION

Tactile perception is a key technology enabling applications
such as dexterous robotic grasping, intelligent prosthetics, and
surgical robots [1]. Tactile sensors primarily aim to mimic
mechanoreceptors, i.e., determining the location, shape, and
intensity of contacts [2]. Instantaneous pressure or force
can be used to measure force and multiple contact points.
In contrast, dynamic tactile sensations are better suited to
extract information about texture and rolling or slipping [3].

Over the years, several technologies have been explored [4],
including capacitive (e.g., [5]), piezoelectric (e.g., [6]),
piezoresistive (e.g., [7]), optical (e.g., [8], [9]), fiber op-
tic (e.g., [10]), and magnetic (e.g., [11]) sensors. While
experimental sensors cover many technologies, commercial
solutions are less diverse. The most common commercial
sensors are based on optics/cameras (e.g., PapillArray from
Contactile or DIGIT from GelSight), magnetic (e.g., uSkin
sensor from Xela Robotics), or piezoelectric (e.g., FTS Tactile
Pressure Sensors from Seed Robotics and BioTac sensor from
SynTouch now discontinued). Further information on haptic
perception can be found in [1], [4].

Over three decades ago, vibrotactile sensing was proposed
for robotic perception (e.g., [12]). Over the years, only a
few others have attempted to develop such sensor types, due
to technological limitations, which are now slowly being
overcome, wider adoption has not yet been possible. Among
the recent approaches to this technology, we can highlight:

For texture recognition in prosthetics, microphones have
been proposed [13]. Specifically, vibrations captured by a
microphone when brushing materials of different textures
are converted into electrotactile feedback. Despite using a
commercial microphone without artificial skin to amplify
vibrations, the setup provides sufficient information for
humans to distinguish textures with an accuracy of 85%.
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Fingerprint-like structured skin has also been used capaci-
tively and piezoelectrically to enhance both static and dynamic
tactile perception, such as grooves [14], [15] and peaks [16].
Specifically, Navaraj et al. [14] used a 3D-printed pattern
containing ridges 500 um wide, 2 mm long, and 500 um
thick. The vertical spacing of the ridges was 1500 um (three
times higher than typically observed in human fingerprints),
and the horizontal spacing was 3000 um [14]. The proposed
setup achieved a maximum accuracy of 99.45%.

These results confirm the viability of using vibrations,
structured skins, and microphones for dynamic tactile per-
ception. However, the design decisions for the fingerprint
pattern are not clearly defined. In most cases, the goal is to
resemble human fingerprints without considering the differing
mechanical properties of artificial skin or transducers. In
contrast, our most recent article [17] presented an approach to
optimizing 3D-printed fingerprints for dynamic tactile sensing
aimed at increasing the spectral size of the vibration signal
and improving the signal-to-noise ratio. Based on these and
previous lab results, we are now transferring the technology
to Nibotics, a start-up specializing in producing humanoid
hands and grippers. The current and planned work of this
collaboration is described in this extended abstract.

II. METHOD

The planned approach for conducting the three key tasks
of localization, texture recognition, and object recognition
includes data collection and selecting the corresponding data
processing techniques.

A. Localization Task

For the localization task, we used a URS5e robotic arm [18]
equipped with an indenter. The URS5e arm was programmed
to “poke” the Seed Robotics’s RH8D hand [19] at various
random positions, and the same process will be replicated on
the Nibotics hand. These pokes allow us to gather data on
how the sound and vibrations propagate through the robotic
hand. These data will later be used to localize tactile stimuli
on the robotic hand. The RH8D hand is equipped with seven
Harley Benton CM-1000 contact microphones, which are
placed at different areas on the hand’s surface to capture a
range of vibrational signals during the poking process, see
Fig. 1. These microphones are sampled at a frequency of
400 kHz, ensuring that sufficient data is captured for analysis.
We are now working on the machine-learning models to
localize tactile stimuli on the hand. Further, we will work on
determining the ideal number of microphones, their placement,
and minimal sampling frequency.
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Fig. 1.
by red area. The microphones on the RH8D hand are mounted from the
outside, whereas on the Nibotics hand are mounted inside the hand.

Schematic diagram of the microphones’ localization, represented

B. Texture Recognition Task

For texture recognition, the setup resembles the localization
task but differs by how the robotic hand is engaged. Instead
of poking, the URSe arm will stroke it with objects of varying
materials and textures. The microphones on the hand will
record the vibrations from these interactions, sampled at
400 kHz, to capture material- and texture-specific patterns.
We will then train machine learning models with these data.
Similarly, we will investigate the lower boundary of the
sampling frequency and number of microphones to complete
this task.

C. Object Recognition Task

Finally, for the object recognition task, we will utilize
objects from the YCB (Yale-CMU-Berkeley) dataset [20],
a widely used collection of standardized objects in the
robotics community. The RH8D hand will be used to grasp
these objects, and the microphones will record the vibration
signals generated during the grasping process. These recorded
signals will capture the vibrations produced as the hand
manipulates different objects. The YCB dataset offers a
diverse range of objects, from everyday items to more complex
shapes, allowing us to collect data on how different objects
generate distinct vibrational signatures when manipulated
which will later be used for training machine learning models
to recognize and differentiate between various objects based
on their corresponding vibrational patterns.

D. Data Processing and Machine Learning Models

The data collected from the localization, texture recognition,
and object recognition tasks will be processed to extract
meaningful features that can be used to train machine learning
models. The primary type of data we will be working with
is time-series data, which is well-suited for analysis using
Convolutional Neural Networks (CNNs) after transforming
the signals into a spectrogram. Additionally, Transformers
will be explored to capture long-range dependencies and

temporal relationships within the time-series data. CNNs
and Transformers are just examples of methods that will be
considered for analysis; we will also investigate other potential
approaches to determine the most effective techniques for
these three tasks. The models will be trained using the data
collected from the three tasks to identify the key features
associated with localization, texture recognition, and object
recognition. Pre-processing techniques, such as noise filtering
and signal normalization, will be applied to the raw data
to improve the quality of the input and the performance of
the machine-learning models. Moreover, we will conduct an
ablation study to determine the minimum required number
of microphones, their placement, and the minimum required
sampling rate.

III. CONCLUSION

The field of robotics is rapidly advancing, with tactile
sensing playing a vital role in enabling robots to interact
with their environments more intuitively and dexterously. In
this project, we aim to address the challenges of texture
recognition, object detection, and the localization of tactile
stimuli. By further developing a vibration-based dynamical
tactile sensor and its integration on a robotic hand, we will
ensure seamless integration, moving these technologies closer
to their commercial potential.

The planned methodology involves collecting tactile data
through structured experiments on three distinct tasks. The
data will be gathered using a UR5e robotic arm, an RH8D
hand, and the Nibotics hand equipped with contact micro-
phones. These datasets will serve as the foundation for training
machine learning algorithms. CNNs and Transformers are
among the methods that will be explored for analysis, with
each method being assessed for its ability to extract both
local and long-range features from the time-series data.

Our ultimate goal is to enable dexterous robotic manipu-
lation at lower costs, thereby enhancing the role of haptic
perception in addressing critical societal challenges.
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