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Abstract
Rich contact perception is crucial for robotic manipulation, yet traditional tactile skins remain expensive
and complex to integrate. This paper presents a scalable alternative: high-accuracy whole-body touch
localization via vibro-acoustic sensing. By equipping a robotic hand with seven low-cost piezoelectric
microphones and leveraging an Audio Spectrogram Transformer, we decode the vibrational signatures
generated during physical interaction. Extensive evaluation across stationary and dynamic tasks reveals
a localization error of under 5 mm in static conditions. Furthermore, our analysis highlights the distinct
influence of material properties: stiff materials (e.g., metal) excel in impulse response localization due
to sharp, high-bandwidth responses, whereas textured materials (e.g., wood) provide superior friction-
based features for trajectory tracking. The system demonstrates robustness to the robot’s own motion,
maintaining effective tracking even during active operation. Our primary contribution is demonstrating
that complex physical contact dynamics can be effectively decoded from simple vibrational signals,
offering a viable pathway to widespread, affordable contact perception in robotics. To accelerate
research, we provide our full datasets, models, and experimental setups as open-source resources.
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1 Introduction
Humans possess a comprehensive system for per-
ceiving their physical surroundings that extends
beyond exteroceptive senses like vision and hearing.
The somatosensory system provides crucial infor-
mation about direct contact and environmental
forces Abraira and Ginty (2013); Navarro-Guerrero
et al. (2023). When an object contacts with the
body, the resulting mechanical vibrations prop-
agate through the skin and tissues, enabling
immediate localization and characterization of the
interaction. This distributed vibro-acoustic sensing
is fundamental not only for object manipulation

but for overall spatial awareness and safe interac-
tion within a dynamic environment. The ability to
detect and interpret these contact events is a key
component of effective physical interaction Wang
et al. (2021).

Drawing from this biological paradigm, the
field of robot perception is increasingly explor-
ing structure-borne sound analysis to supplement
conventional vision and force modalities Bonner
et al. (2021); Toprak et al. (2018). The integra-
tion of piezoelectric sensors, particularly contact
microphones, presents a promising avenue for cap-
turing the complex dynamics of robot-environment
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interactions. By leveraging the unique proper-
ties of acoustic signals, researchers have made
notable progress in developing vibro-acoustic sens-
ing techniques for contact-rich manipulation Lu
and Culbertson (2023); Mejia et al. (2024); Liu
and Chen (2024); Wall and Brock (2022).

In this paper, we propose a cost-effective yet
accurate method that enables robots to perceive
physical contact in a more natural manner. We
demonstrate our approach on two real-world tasks:
impulse response localization and trajectory track-
ing. Our method utilizes a robotic hand equipped
with seven contact microphones to capture vibra-
tional signals, which are then processed using an
Audio Spectrogram Transformer (AST) architec-
ture to predict the positions of external touches
on the hand. To train and evaluate this system,
we collected extensive datasets consisting of over
65,000 unique samples for impulse response local-
ization and over 240,000 interactions for trajectory
tracking.

Our contribution is two-fold. Firstly, we
present a robust method for vibro-acoustic sensing
that can be applied to complex robotic geome-
tries. We provide a detailed analysis of how
material properties, specifically stiffness versus
texture, distinctly influence localization accuracy
across different interaction modes. Secondly, we
demonstrate the effectiveness of our approach in
dynamic scenarios, where the robot hand actively
moves while interacting with its surroundings. Our
results show that the system maintains effective
localization accuracy even in the presence of sig-
nificant motion and actuator noise. By leveraging
vibro-acoustic sensing and deep learning, our work
provides a scalable solution for whole-body con-
tact perception. To facilitate further research, we
open-source all our code, datasets, and experimen-
tal setups on our website, allowing researchers and
practitioners to easily replicate and build upon our
work: wzaielamri.github.io/publication/vibrosense.

2 Related Works
For robots to operate safely and effectively in the
physical world, they must be able to perceive and
interpret contact within their environment. This
sense of touch is crucial for enabling robots to
securely manipulate objects and avoid unexpected
or damaging collisions Hoffmann and Longo (2022).
To address this, researchers have explored various

Fig. 1 Setup of the impulse response localization task. The
UR5e robotic arm is shown applying controlled pokes to
the hand using a solenoid actuator with a metal indenter.

sensing modalities, each with distinct advantages
and trade-offs. The dominant approaches include
creating large-area robotic skin to directly mimic
biological touch and developing high-resolution
vision-based sensors for detailed, localized contact
analysis Hardman et al. (2025). As a distinct alter-
native, vibro-acoustic sensing has emerged as a
method for capturing the rich dynamics of inter-
action events, leveraging sound and vibration Lee
et al. (2025). This section provides an overview of
the state-of-the-art approaches, highlighting their
respective capabilities and limitations.

2.1 Tactile Sensor Arrays and
Robotic Skin

Tactile sensor arrays and robotic skin technolo-
gies enable robots and prosthetic devices to sense
and interpret touch, mimicking how human skin
detects pressure, texture, and temperature. These
systems are built from grids of sensitive elements
embedded in flexible materials, enabling accu-
rate, responsive detection of physical contact and
environmental interactions. An example is Touch-
lab , which develops ultra-thin electronic skin.
Their sensors equip robots with real-time touch
sensing, enabling remote control with haptic feed-
back for healthcare and hazardous environments.
Hardman et al. Hardman et al. (2025) developed
another advanced tactile skin solution that uses
a soft hydrogel embedded with over 860,000 con-
ductive pathways to detect pressure, temperature,
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and damage, enabling highly sensitive, adaptive
touch sensing for robots and prosthetics. However,
these methods face significant drawbacks. They
are often expensive to produce and implement,
and their delicate construction makes them fragile
and susceptible to damage from routine physical
interaction. Furthermore, the sensing capability is
localized, meaning it is confined only to the specific
areas where the robotic skin is applied, limiting
the robot’s overall environmental awareness Chen
et al. (2023).

2.2 Vision-Based Tactile Sensing
Vision-based tactile sensing takes a different
approach by inferring contact information from
camera observations of a deformable material.
This approach can reconstruct detailed 3D con-
tact geometry and force distribution from images.
Examples of such sensors include GelSight Yuan
et al. (2017), which uses a camera to capture
fine-grained texture and shapes of an illumi-
nated elastomer. More compact designs such as
DIGIT Lambeta et al. (2020) have helped stan-
dardize this approach and broaden its use in
manipulation research. These sensors provide rich
data well-suited for grasping and in-hand manip-
ulation, but they remain inherently local. Due to
their bulk and reliance on internal optics, they
are inherently difficult to scale for large surface
areas and are not well-suited for whole-body tactile
sensing.

2.3 Vibro-Acoustic Sensing in
Robotics

Distinct from surface-based electronic or visual
methods, vibro-acoustic sensing exploits structure-
borne sound to detect physical interactions. Con-
tact microphones convert mechanical vibrations
propagating through the robot body into electrical
signals, providing a lightweight, inexpensive, and
highly scalable sensing modality. It can provide
a complementary source of information to vision
and force sensors, especially in occluded settings
Toprak et al. (2018). In the following, we review
relevant microphone-based work on (i) impulse
response localization, which estimates contact loca-
tions from transient vibration patterns and (ii)
trajectory estimation during contact-rich tasks,

which tracks continuous motion from ongoing
acoustic signals.

2.3.1 Impulse Response Localization
Instead of covering the robot with dense arrays,
impulse localization estimates contact coordinates
by decoding the structural vibrations captured by
a sparse microphone array. For instance, Sonic-
Boom Lee et al. (2025) equips a robot end-effector
with a distributed array of piezoelectric con-
tact microphones to estimate the 3D locations
of contact events. Using a data-driven approach
that leverages relative acoustic features across
microphones, SonicBoom achieves centimeter-level
localization accuracy across varying surfaces and
contact types, demonstrating the potential of pas-
sive acoustic sensing for high-resolution spatial
perception even in occluded environments.

While passive methods capture naturally occur-
ring contact vibrations, active vibro-acoustic meth-
ods introduce controlled vibrations into the robot
or object to probe contact. Lu and Culbertson Lu
and Culbertson (2023) integrated piezoelectric
actuators with microphones in robotic grippers,
enabling closed-loop estimation of contact state
and object properties from reflected acoustic sig-
nals. Similarly, Wall et al. Wall et al. (2023)
embedded microphones into soft pneumatic actu-
ators, enabling touch localization on deformable
materials with complex geometries and in noisy
environments. Such demonstrations highlight how
acoustic sensing can augment contact perception
without relying on dense tactile arrays or visual
feedback.

Building on localization, the same vibration
signals also reveal finer details, such as texture,
slip, and material properties, making contact
microphones highly complementary to other modal-
ities. This richness enables biomimetic tactile
designs, such as the fingerprint-inspired sensors
from Quilachamín et al. Juiña Quilachamín and
Navarro-Guerrero (2023) that enhance spatial
resolution and material identification. These capa-
bilities naturally extend to tracking continuous
interactions.

2.3.2 Trajectory Tracking
Although locating discrete impacts is well-studied,
extending vibro-acoustic sensing to track the con-
tinuous motion of sliding or drawing interactions
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remains a significant challenge that has been
addressed by fewer scientists. Liu and Chen Liu
and Chen (2024) proposed SonicSense, employ-
ing in-hand acoustic vibration sensing combined
with deep neural networks to reconstruct detailed
object motion information during manipulation.
By analyzing vibration-induced acoustic patterns
generated by sliding or interacting objects on gel
surfaces, their system estimates motion direction,
speed, and reconstructs 3D shapes using sound as
the primary sensing modality.

In a related direction, Lu et al. Lu et al.
(2020) modeled and rendered tool-surface interac-
tion sounds with wavelet-tree models segmented
by contact velocity. This method, though primar-
ily for perceptual rendering, demonstrates that
velocity-dependent acoustic cues encode contact-
motion information, underscoring the potential for
trajectory inference from sound in manipulation
tasks.

Extending this notion further, MilliSonic Wang
and Gollakota (2019) achieves highly accurate
acoustic motion tracking with sub-millimeter pre-
cision using airborne acoustic signals during free-
space object motion. While this approach (i.e.,
airborne acoustic) lies outside the primary focus of
this paper, it underscores the broader potential of
acoustic modalities for precise trajectory estima-
tion, even though it relies on external microphone
arrays rather than contact-based vibration sensing.

These studies indicate that acoustic feedback
contains rich spatiotemporal information to recon-
struct continuous trajectories of hands or tools,
opening new possibilities for audio-driven robotic
control, high-resolution trajectory tracking, and
dynamic, contact-rich manipulation.

The reviewed literature highlights that micro-
phones can serve as lightweight and information-
rich sensors for robotic interaction perception.
However, the simultaneous application of this
modality to both impulse response localization
and continuous trajectory tracking, particularly
while the robot itself is in motion, remains under-
explored. Our work addresses this gap. In contrast
to prior studies, we demonstrate that distributed
contact microphones, coupled with a deep learning
model, can robustly decode diverse contact behav-
iors. While our hardware setup shares the passive,
multi-microphone design of SonicBoom Lee et al.
(2025), we significantly extend the scope to include
dynamic trajectory localization, tracking external

sliding contacts on the surface. Additionally, we
provide a novel analysis of how material proper-
ties (e.g., stiffness vs. texture) distinctly influence
the vibrational signatures used for localization.
Furthermore, we validate our system’s robust-
ness to the robot’s own actuator noise, a critical
step toward enabling safe, whole-body contact
perception in real-world deployment.

3 Method
We propose a cost-effective yet accurate method
that enables robots to perceive physical contact
in a more natural manner. We demonstrate our
approach on two real-world tasks: impulse response
localization and a more complex case, trajectory
tracking.

The following section describes the hardware
setup of the robotic hand, followed by a detailed
explanation of the two tasks.

3.1 Hardware Setup
For all our experiments, we used the Seed
Robotics’s RH8D hand Seed Robotics. This hand
has 19 degrees of freedom and is actuated by 8
motors. We equip the hand with seven Harley Ben-
ton CM-1000 contact microphones positioned to
capture tactile vibrations (Fig. 2). Custom mounts
were designed to fix the sensors in position; corre-
sponding CAD models are provided on the project
website. These microphones are capturing a range
of −500mV to +500mV .

3.2 Impulse Response Localization
Task

3.2.1 Task Overview
For the impulse response localization task, we
employed a UR5e robotic arm Universal Robots
equipped with a solenoid actuator, onto which we
mounted four interchangeable cylindrical indenters
made of distinct materials: soft plastic, hard plas-
tic, wood, and metal, as shown in Figure 1. The
UR5e autonomously moves the solenoid to random-
ized positions facing the ‘Back’, ‘Front’, ‘Right’,
and ‘Left’ sides of the robotic hand. Once in posi-
tion, the solenoid is activated to deliver controlled
poking interactions to the surface of the hand. A
demonstration video of this data collection process
is available on our website.
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Fig. 2 Schematic diagram of the microphones’ localization,
represented by the red area. The microphones on the RH8D
hand are mounted externally.

3.2.2 Dataset
The interactions generate mechanical vibrations
and acoustic signals that propagate throughout
the robotic hand’s structure. Capturing these
responses allows us to study the relationship
between the resulting sensory feedback and the con-
tact location. To build a robust dataset for training
and evaluation, we collected approximately 65000
unique samples. Data were gathered from multiple
sides and contact points around the robotic hand,
both while the hand was idle and powered on and
while it was off, to account for the background and
internal noise introduced by the fan during normal
operation.

Each interaction recording lasts 500 ms, trig-
gered 200 ms prior to contact. We initially cap-
tured raw signals at 50 kHz to ensure full spectral
coverage. To prepare this data for the neural
network, we apply the following standardized
preprocessing pipeline:

1. Downsampling: The signals are downsam-
pled to 20 kHz. As analyzed in Section 4.1,
this sampling rate was selected because frequen-
cies above this threshold were found to contain
negligible information for localization.

2. Windowing: We trim the recording to a
focused 200 ms window (from 125 ms to
325 ms) to isolate the interaction event while
discarding noise.

3. Feature Extraction: The processed time-
series data is converted into time–frequency
features using a Short-Time Fourier Transform
(STFT). We use a window size (nfft) of 128,
which was empirically determined to minimize
localization error (see Section 4.1).

4. Noise Removal: We utilize the discarded ini-
tial 100 ms of the pre-trigger phase to estimate
and subtract the steady-state background noise.

3.3 Trajectory Tracking Task
3.3.1 Task Overview
The trajectory tracking task is a more com-
plex task, in which the UR5e robot arm draws
different patterns and drawings on the surface
of the forearm of the Seed Robotics’s RH8D
hand Seed Robotics using the different four inden-
ters materials. To automate the data collection
procedure, we program the UR5e arm to draw
a subset of real drawings from the open-source
Quick Draw Jongejan et al. (2016) dataset, which
spans 345 categories. We use the simplified version
of the drawings. To minimize the robot’s travel
time between strokes, we optimized the drawing
sequence by formulating the problem as a General-
ized Traveling Salesperson Problem (GTSP) Pop
et al. (2024) and implemented this using the
Google OR-Tools routing engine . This approach
allows each stroke to be drawn either forwards or
in reverse and adjust its drawing order.

3.3.2 Dataset
For this task, we collect two datasets with different
levels of complexity. The first dataset consists of
40,000 strokes per indenter (160,000 in total), with
the Seed robotic hand powered on, idling in a fixed
position, and its fan noise present. The second
dataset contains 20,000 interactions per indenter
(80,000 in total), during which the Seed robotic
hand moves into random positions. Each stroke
interaction varies in duration between 1s and 10s.
This setup mimics real-world conditions, albeit
exaggerated here to test the approach’s limits, in
which the robot performs actions while still needing
to correctly sense its surroundings. The second
dataset is therefore more challenging, as it requires
the network to distinguish between hand motion
and external touches.
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Preprocessing follows the steps described in
Section 3.2.2. We downsample the signals to
20 kHz. We then segment the continuous signals
into 200 ms chunks. For the target variable, we
assign the average hand position (x, y, z) recorded
within each chunk. We then apply the same STFT
parameters (128-window size) to generate con-
sistent spectrogram features across both tasks.
Finally, we remove the background noise using the
first 100 ms of the recording.

3.4 Networks Architecture
We employ the Audio Spectrogram Transformer
(AST) Gong et al. (2021) architecture for these
tasks due to its demonstrated effectiveness in learn-
ing from time–frequency representations of audio
signals. AST leverages self-attention mechanisms
to capture both local and global dependencies in
spectrograms, making it particularly well-suited
for tasks where temporal dynamics and subtle
acoustic cues are critical. Its architecture allows
for focusing on relevant patterns across the entire
input, which is essential for accurately predicting
target positions from audio interactions. Addition-
ally, AST’s proven performance across a variety of
audio classification and localization tasks ensures
it generalizes well across our datasets, which vary
in complexity.

While the standard AST architecture is
designed for single-channel input, we adapt it for
spatial perception by modifying the initial patch
embedding layer to accept a 7-channel input ten-
sor. We stack the synchronized spectrograms from
the seven microphones along the channel dimen-
sion (creating a 7 × T × F tensor, where T denotes
the number of time frames and F the number
of frequency bins), allowing the model to learn
inter-channel spatial features, such as phase and
amplitude differences, directly during tokenization.
Our network configuration includes 12 transformer
blocks with a kernel size of 16 and a stride of 10,
and we use a batch size of 128. We optimize the
model using mean squared error (MSE) loss, with
the Adam optimizer and a learning rate of 0.0007.
To improve stability, we apply a cosine learning
rate schedule with a linear warmup phase (1% of
the total training steps).

4 Experimental Results
4.1 Parameter Optimization &

Spectral Analysis
Before benchmarking the tasks’ performance, we
analyzed the spectral characteristics of the raw
data to determine the optimal input frequency
and STFT configuration. We first examined the
frequency content of the raw 50 kHz signals.
As illustrated in Figure 3, frequencies above
20 kHz exhibit negligible signal magnitude (below
−40 dB).
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Fig. 3 Magnitude spectra (in dB) of all seven channels.
Each spectrum is normalized such that the maximum mag-
nitude is 0 dB. Frequency is shown in kHz.

To evaluate the impact of signal processing
choices, we trained multiple neural networks (10
random seeds per configuration) while varying
both the input frequency and the STFT window
size (nfft). For this parameter sweep, we utilized a
fixed validation protocol: the ‘soft plastic’ interac-
tions were held out as the test set, and the networks
were trained on the remaining materials. Figure 4
reports the Euclidean distance (in mm) averaged
across this held-out set over all 10 seeds.

The results indicate that using only low-
frequency components (below 10 kHz) degrades
localization accuracy. However, incorporating
higher-frequency components beyond 20 kHz does
not lead to any measurable performance improve-
ments. Based on these findings, we selected 20
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Fig. 4 Test distance by frequency and window size (nfft). Mean distances (mm) with 10 repetitions, showing the influence
of frequency and spectral resolution.

kHz for our subsequent analyses. This choice bal-
ances accuracy with computational efficiency by
excluding frequencies that provide little or no use-
ful information. Similarly, we chose a window size
equal to 128, as it offered a favorable trade-off
between time–frequency resolution and model per-
formance in our preliminary evaluations, achieving
an average Euclidean distance error of 4.332 mm.

4.2 Impulse Response Localization
Task

To evaluate the model’s ability to generalize across
different surface properties, we extended our exper-
imental analyses beyond the initial soft plastic
evaluation scenario used for parameter tuning. We
adopted a “leave-one-material-out” strategy to test
unseen material categories. Specifically, we con-
ducted separate experiments in which soft plastic,
hard plastic, wood, and metal were individually
held out as the test set, while the network was
trained on the remaining materials. This approach
rigorously tests the model’s robustness to varying
vibro-acoustic impedances and surface textures.
Each configuration was trained using 10 different
random seeds to ensure statistical reliability; the
mean localization errors and standard deviations
are summarized in Table 1.

As presented in Table 1, our findings reveal a
strong correlation between the model’s localiza-
tion accuracy and the physical properties of the

Table 1 Results on impulse response localization
dataset: mean squared error (MSE) and Euclidean
distance in mm across different test splits. The results
are calculated over 10 different seeds. Lower MSE
values indicate better performance. The values in
parentheses represent the standard deviation.

Test Split MSE ↓ Euclid. Dist. ↓

Metal 0.007 (0.011) 3.460 (0.681)

Soft Plastic 0.012 (0.010) 4.943 (0.799)

Hard Plastic 0.020 (0.007) 5.391 (0.785)

Wood 0.022 (0.011) 5.823 (1.361)

indenter material. This trend underscores that the
model’s performance is fundamentally tied to the
distinct acoustic signature generated by each mate-
rial’s interaction with the surface. The lowest error
(3.460 mm) was achieved with the metal inden-
ter. Physically, the high stiffness and hardness
of metals result in a sharp, high-energy impact
that propagates efficiently, producing a clean and
highly localized vibrational signal with minimal
ambiguity.

Conversely, the wood indenter yielded the high-
est mean error (5.823 mm), followed by hard plastic
(5.391 mm) and soft plastic (4.943 mm). This sug-
gests that materials with lower density or acoustic
impedance closer to that of the robotic shell itself
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may generate signals that are harder to distinguish
from structural reverberations.

To further investigate these results, we ana-
lyzed the per-view prediction error (Euclidean
distance in mm) for the forearm (Fig. 5) and the
hand (Fig. 6). This visualization breaks down the
error further by the ‘Back’, ‘Front’, ‘Right’, and
‘Left’ views.
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Fig. 5 Forearm localization error: half violin plots showing
the distribution of prediction error (Euclidean Distance in
mm) for four materials on the forearm section, broken down
by view.
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Fig. 6 Hand localization error: half violin plots showing
the distribution of prediction error (Euclidean Distance in
mm) for four materials on the hand section.

The data indicates that the metal indenter
provides the most spatially consistent acoustic sig-
nature for the impulse response localization task.
As observed across all plots, metal achieves the
lowest mean error and, notably, the lowest vari-
ance across all four views. The error distributions
are tightly clustered near a low value (typically
under 5 mm), suggesting that the high stiffness of

the indenter minimizes deformation upon contact.
This results in a sharp, high-energy signal transfer
that remains consistent regardless of the contact
location.

In comparison, the polymer and organic mate-
rials exhibit distinct view-dependent distributional
characteristics:
• Soft plastic: The distribution for soft plastic

highlights the influence of material compliance.
We observe increased variance, specifically in
the ‘Left’ view, particularly in the Forearm plot.
Physically, the softer material deforms upon
impact, resulting in a damped interaction with
less distinct transient features than with stiffer
materials like metal. This lack of sharpness
appears to make the signal more difficult to local-
ize precisely, particularly on the left side of the
robot, where structural geometry may further
complicate signal propagation.

• Hard plastic: While this material yields precise
localization in most views, the analysis reveals a
specific interaction dynamic in the ‘Back’ view.
As shown in the Hand (Fig. 6) and Forearm
(Fig. 5) configurations, the error distribution
for this view extends noticeably (reaching 30–35
mm). This suggests that the acoustic impedance
match between the hard plastic indenter and
the robot’s dorsal shell generates a signal propa-
gation pattern that is more complex to spatially
resolve than interactions on the ventral or lateral
surfaces.

• Wood: Finally, the wood indenter shows higher
overall error but smaller distributional tails and
less extreme outliers than soft plastic ‘Left’ view
and the hard plastic ‘Back’ view. Compared
to metal, it exhibits higher overall variance,
particularly in the ‘Front’ and ‘Back’ views of
the forearm. This characteristic variance aligns
with the material’s structural properties. Unlike
metal and Plastic, which are manufactured to be
homogeneous and isotropic, wood is a naturally
heterogeneous material with variable density
and stiffness across its geometry. These inherent
irregularities introduce slight inconsistencies in
the impact dynamics, resulting in a less deter-
ministic acoustic signature than that of the
uniform metal indenter.
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4.3 Trajectory Tracking Task
For the trajectory tracking task, we evaluated
our model using a similar ‘leave-one-material-out’
approach. We conducted four separate experi-
ments, each time holding out one indenter material
(soft plastic, hard plastic, wood, or metal) as the
test set while training on the remaining three. We
used 276 of the 345 categories of the Quick Draw
dataset Jongejan et al. (2016) for training, 35 for
validation, and a distinct set of 34 for testing.

Furthermore, to assess the model’s robustness
against the hand’s own motion, we evaluated all
test splits under three conditions. The first was a
stationary scenario, in which the hand was turned
on and remained in a fixed position. The second
was a dynamic scenario, with the hand moving to
randomized poses between interactions. The final,
mixed scenario, utilized a combined dataset from
both conditions to evaluate generalization across
different motion contexts.

We report the quantitative results in Table 2,
including the mean squared error (MSE) loss and
the Euclidean distance (in mm) calculated over
the test splits for 10 different seeds.

A critical finding in this experiment is the rever-
sal of material performance rankings compared to
the impulse response localization task, especially
in the first test scenario with fixed position. While
metal was the superior indenter for stationary pok-
ing, wood outperforms all other materials in this
task, achieving the lowest error in every scenario
(2.226 mm in ‘Fixed Position’), with soft/hard
plastics performing in between. This shift high-
lights the fundamental physical difference between
the two tasks. The impulse response localization
task relies on impact dynamics, where metal’s stiff-
ness produces a sharp, high-bandwidth impulse.
In contrast, the trajectory tracking task is driven
by friction and surface interaction. The natural
surface roughness and grain of the wood inden-
ter generate a rich, continuous acoustic texture
as it drags across the robot’s surface, analo-
gous to how biomimetic fingerprint ridges amplify
structure-borne vibrations during sliding interac-
tions Juiña Quilachamín and Navarro-Guerrero
(2023), providing dense spectro-temporal features
for tracking. Metal, being smoother, generates less
distinct friction-induced vibrations when sliding,
making the continuous path harder to reconstruct.

However, in the ‘Random Movement’ and
‘Fixed + Movement’ scenarios, hard and soft plas-
tics show slightly higher errors than metal (e.g.,
Soft plastic: 12.946mm vs. Metal: 10.818mm in
‘Random Movement’). This may arise from exces-
sive noise caused by minor, inconsistent hand
movements across test set collections, where slight
variations in individual hand poses can persist
despite efforts to collect identical interactions.

Crucially, despite these challenges, the sys-
tem maintains effective localization accuracy. Even
in the extreme ‘Random Movement’ condition,
errors remain reasonably low (e.g., 9.911 mm for
wood), validating that vibrational signal analysis
is a robust sensing modality capable of providing
robots with reliable physical awareness even during
active operation.

To contextualize these metrics, Figure 7 visu-
alizes trajectory reconstructions for four repre-
sentative classes: Baseball, Zigzag, Banana, and
Keyboard.

In the ‘Fixed Position’ results, the model
demonstrates high fidelity. The predicted path
tightly matches the target, accurately capturing
the continuous curvature of the Banana and Base-
ball as well as the sharp, distinct corners of the
Keyboard. In the ‘Random Movement’ scenario,
the model retains the ability to track the underly-
ing trajectory despite kinematic noise. Although
the predictions exhibit increased variance and local
deviations due to acoustic interference, the global
topology of shapes like the Zigzag remains recog-
nizable. The system recovers the overall structure
of the path, identifying that the degradation is pri-
marily manifested as jitter rather than a total loss
of spatial coherence.

Based on these results, localization accuracy
is governed by the interplay between the robot’s
kinematic state and the contact material proper-
ties. Across all material types, the ‘Fixed Position’
experiment consistently yielded the highest preci-
sion. The ‘Random Movement’ scenario, consider-
ably more extreme than typical manipulation tasks,
produced the highest error rates due to acoustic
interference from internal motor actuation and
structural vibrations. The ‘Fixed + Movement’ sce-
nario yielded intermediate performance, suggesting
that the model can learn to partially generalize
across varying noise conditions.
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Table 2 Results on trajectory tracking dataset: mean squared error (MSE) and Euclidean distance in mm across different
test splits and scenarios (10 seeds).

Test Split Scenario MSE ↓ Euclid. Dist. ↓

Metal
Fixed Position 0.015 (0.002) 3.696 (0.191)
Random Movement 0.130 (0.027) 10.818 (1.199)
Fixed + Movement 0.048 (0.004) 5.639 (0.206)

Soft Plastic
Fixed Position 0.013 (0.001) 3.472 (0.067)
Random Movement 0.186 (0.018) 12.946 (0.719)
Fixed + Movement 0.085 (0.003) 7.297 (0.169)

Hard Plastic
Fixed Position 0.008 (0.001) 2.692 (0.118)
Random Movement 0.177 (0.011) 12.418 (0.392)
Fixed + Movement 0.080 (0.007) 6.752 (0.232)

Wood
Fixed Position 0.005 (0.001) 2.226 (0.079)
Random Movement 0.117 (0.015) 9.911 (0.723)
Fixed + Movement 0.042 (0.002) 4.830 (0.088)

5 Conclusion
This paper demonstrates that high-accuracy touch
localization on a robotic hand is achievable through
vibrational signal analysis, offering a scalable,
cost-effective alternative to complex tactile skin
arrays. By leveraging an Audio Spectrogram
Transformer (AST) to process vibrational sig-
nals from simple piezoelectric microphones, our
method achieves robust performance across varied
interaction modalities.

A key contribution of this work is the compre-
hensive analysis of how material properties and
physical interaction modes influence vibro-acoustic
sensing. Our results reveal a fundamental distinc-
tion between stationary and dynamic sensing: stiff
materials (such as metal) generate the sharpest
impulse responses for impulse-response localiza-
tion, whereas textured materials (such as wood)
produce the most distinct friction-based features
for trajectory tracking. These findings highlight
that acoustic sensing captures rich physical data
beyond simple coordinates, intrinsically encoding
the mechanical properties of the contact object.

We further validated the system’s robustness in
active scenarios. While the introduction of motion
and internal motor noise inevitably degrades pre-
cision, the system maintains effective localization
accuracy (typically under 12 mm even under
extreme, arguably unrealistic conditions), proving
its viability for real-world tasks where robots must
sense while grasping or manipulating objects. Our
signal processing analysis confirms that a sam-
pling rate of 20 kHz is sufficient to capture these

features, balancing computational efficiency and
sensing fidelity.

Despite these findings, limitations remain. Our
geometric analysis identified distinct acoustic
interaction behaviors, including the impedance
mismatch observed with hard plastic on the dor-
sal shell, and the signal damping caused by soft
materials in complex structural areas. Addition-
ally, although the system demonstrates resilience
to self-generated motor noise, the localization
error inevitably increases during motion. Future
work will address these challenges by employing
adaptive pre-filtering to decouple internal motor
noise and fusing vibro-acoustic features with visual
data to resolve geometric ambiguities. Further-
more, we aim to extend the system’s capabilities
to include closed-loop manipulation and slip detec-
tion, thereby enhancing robustness during delicate
and clutter-rich interaction tasks.

Finally, to facilitate reproducibility, we are
making our model checkpoints, datasets, and exper-
imental setups publicly available. By open-sourcing
these resources, we aim to accelerate the develop-
ment of affordable whole-body contact perception,
which is essential for advancing robotic grasping
and manipulation capabilities.
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